J1721+8842: a gravitationally lensed binary quasar with a proximate damped Lyman-α absorber

Author:

Lemon C.ORCID,Millon M.,Sluse D.,Courbin F.,Auger M.,Chan J. H. H.,Paic E.,Agnello A.

Abstract

High-redshift binary quasars provide key insights into mergers and quasar activity, and are useful tools for probing the spatial kinematics and chemistry of galaxies along the line of sight. However, only three sub-10-kpc binaries have been confirmed above z = 1. Gravitational lensing would provide a way to easily resolve such binaries, study them in higher resolution, and provide more sightlines, though the required alignment with a massive foreground galaxy is rare. Through image deconvolution of StanCam Nordic Optical Telescope (NOT) monitoring data, we reveal two further point sources in the known, z ≈ 2.38, quadruply lensed quasar (quad) J1721+8842. An ALFOSC/NOT long-slit spectrum shows that the brighter of these two sources is a quasar with z = 2.369 ± 0.007 based on the C III] line, while the C III] redshift of the quad is z = 2.364 ± 0.003. Lens modelling using point-source positions rules out a single source model, favouring an isothermal lens mass profile with two quasar sources separated by ∼6.0 kpc (0.73″) in projection. Given the resolving ability from lensing and current lensed quasar statistics, this discovery suggests a large population of undiscovered, unlensed sub-10-kpc binaries. We also analyse spectra of two images of the quad, showing narrow Lyα emission within the trough of a proximate damped Lyman-α absorber (PDLA). An apparent mismatch between the continuum and narrow line flux ratios provides a new potential tool for simultaneously studying microlensing and the quasar host galaxy. Signs of the PDLA are also seen in the second source, but a deeper spectrum is still required to confirm this. Thanks to the multiple lines of sight from lensing and two quasar sources, this system offers simultaneous subparsec- and kiloparsec-scale probes of a PDLA.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3