The LOFAR view of giant, early-type galaxies: Radio emission from active nuclei and star formation

Author:

Capetti A.,Brienza M.,Balmaverde B.,Best P. N.,Baldi R. D.,Drabent A.,Gürkan G.,Rottgering H. J. A.,Tasse C.,Webster B.

Abstract

We studied the properties and the origin of the radio emission in the most luminous, early-type galaxies (ETGs) in the nearby Universe (MK ≤ −25, recession velocity ≤7500 km s−1), as seen by the 150 MHz Low-Frequency ARray (LOFAR) observations. LOFAR images are available for 188 of these giant ETGs (gETGs), and 146 (78%) of them are detected above a typical luminosity of ∼1021 W Hz−1. They show a large spread in power, reaching up to ∼1026 W Hz−1. We confirm a positive link between the stellar luminosity of gETGs and their median radio power, the detection rate, and the fraction of extended sources. About two-thirds (91) of the detected gETGs are unresolved, with sizes ≲4 kpc, confirming the prevalence of compact radio sources in local sources. Forty-six gETGs show extended emission on scales ranging from 4 to 340 kpc, at least 80% of which have a FR I class morphology. Based on the morphology and spectral index of the extended sources, ∼30% of them might be remnant or restarted sources, but further studies are needed to confirm this. Optical spectroscopy (available for 44 gETGs) indicates that for seven gETGs the nuclear gas is ionized by young stars suggesting a contribution to their radio emission from star forming regions. Their radio luminosities correspond to a star formation rate (SFR) in the range 0.1−8 M yr−1 and a median specific SFR of 0.8 × 10−12 yr−1. The gas flowing toward the center of gETGs can accrete onto the supermassive black hole but also stall at larger radii and form new stars, an indication that feedback does not completely quench star formation. The most luminous gETGs (25 galaxies with MK < −25.8) are all detected at 150 MHz; however, they are not all currently turned on: at least four of them are remnant sources and at least one is likely powered by star formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3