Refractory elements in the gas phase for comet 67P/Churyumov-Gerasimenko

Author:

Rubin MartinORCID,Altwegg Kathrin,Berthelier Jean-Jacques,Combi Michael R.ORCID,De Keyser JohanORCID,Dhooghe FrederikORCID,Fuselier StephenORCID,Gombosi Tamas I.ORCID,Hänni NoraORCID,Müller Daniel,Pestoni BorisORCID,Wampfler Susanne F.ORCID,Wurz PeterORCID

Abstract

Context. Gas-phase sodium, silicon, potassium, and calcium were previously identified in mass spectra recorded in the coma of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency’s Rosetta mission. The major release process for these atoms was identified as sputtering by the solar wind. More recently, remote observations of numerous comets over a range in heliocentric distances revealed the presence of metal atoms of iron and nickel that had been released either from the nucleus or from a distributed source with a short scale length. Sputtering, however, has been dismissed as a major release process due to the attenuation of the solar wind in the comae of some of the observed targets. Aims. We investigated the presence of refractory species in the gas phase of the coma of 67P/Churyumov-Gerasimenko. This investigation includes a period close to perihelion when the solar wind was likely absent from the near-nucleus region due to the increased cometary activity. Additionally, we extended our search to iron and nickel. Methods. We analyzed in situ data from the Rosetta/ROSINA Double Focusing Mass Spectrometer DFMS. Results. We found that gas-phase silicon was present throughout the Rosetta mission. Furthermore, the presence of sodium and iron atoms near the comet’s perihelion confirms that sputtering cannot be the sole release process for refractory elements into the gas phase. Nickel was found to be below the detection limit. The search for parent species of any of the identified gas phase refractories has not been successful. Upper limits for a suite of possible fragment species (SiH, SiC, NaH, etc.) of larger parent and daughter species have been obtained. Furthermore, Si did not exhibit the same drop in signal as do common cometary gases when the spacecraft is pointed away from the nucleus. The combined results suggest that a direct release of elemental species from small grains on the surface of the nucleus or from small grains in the surrounding coma is a more likely explanation than the previous assumption of release via the dissociation of gaseous parent molecules.

Funder

Swiss National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3