Exoplanet Atmosphere Retrievals in 3D Using Phase Curve Data with ARCiS: Application to WASP-43b

Author:

Chubb Katy L.ORCID,Min MichielORCID

Abstract

Aims. Our goal is to create a retrieval framework which encapsulates the three-dimensional (3D) nature of exoplanet atmospheres, and to apply it to observed emission phase curve and transmission spectra of the ‘hot Jupiter’ exoplanet WASP-43b. Methods. We present our 3D framework, which is freely available as a stand-alone module from GitHub. We use the atmospheric modelling and Bayesian retrieval package ARCiS (ARtful modelling Code for exoplanet Science) to perform a series of eight 3D retrievals on simultaneous transmission (HST/WFC3) and phase-dependent emission (HST/WFC3 and Spitzer/IRAC) observations of WASP-43b as a case study. Via these retrieval setups, we assess how input assumptions affect our retrieval outcomes. In particular we look at constraining equilibrium chemistry vs. a free molecular retrieval, the case of no clouds vs. parametrised clouds, and using Spitzer phase data that have been reduced from two different literature sources. For the free chemistry retrievals, we retrieve abundances of H2O, CH4, CO, CO2, AlO, and NH3 as a function of phase, with many more species considered for the equilibrium chemistry retrievals. Results. We find consistent super-solar C/O (0.6–0.9) and super-solar metallicities (1.7–2.9 dex) for all retrieval setups that assume equilibrium chemistry. We find that atmospheric heat distribution, hotspot shift (≈15.6° vs. 4.5° for the different Spitzer datasets), and temperature structure are very influenced by the choice of Spitzer emission phase data. We see some trends in molecular abundances as a function of phase, in particular for CH4 and H2O. Comparisons are made with other studies of WASP-43b, including global climate model (GCM) simulations, available in the literature. Conclusions. The parametrised 3D setup we have developed provides a valuable tool to analyse extensive observational datasets such as spectroscopic phase curves. We conclude that further near-future observations with missions such as the James Webb Space Telescope and Ariel will greatly improve our understanding of the atmospheres of exoplanets such as WASP-43b. This is particularly evident from the effect that the current phase-dependent Spitzer emission data has on retrieved atmospheres.

Funder

Horizon 2020

STFC

Publisher

EDP Sciences

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3