X-ray emission of contact binary variables within 1 kpc

Author:

Liu JunhuiORCID,Wu JianfengORCID,Esamdin AliORCID,Gu Wei-MinORCID,Sun MouyuanORCID,Wang JunfengORCID

Abstract

Aims. The X-ray emission of contact binaries (EW-type) is an important facet of such systems. Thus, X-ray emitting EW-type binaries (EWXs) are ideal laboratories for studying the X-ray radiation saturation mechanisms as well as binary evolution. By assembling the largest sample to date of EWXs with periods of less than 1 day from the All-Sky Automated Survey for Supernovae Variable Stars Database and X-ray catalogs from the XMM-Newton and ROSAT missions, we aim to conduct a systematic population study of X-ray emission properties of EWXs within 1 kpc. Methods. We carried out correlation analyses for the X-ray luminosity, log LX, and X-ray activity level log(LX/Lbol) versus the orbital period, P, effective temperature, Teff, metallicity [Fe/H], and the surface gravity log g of EWXs. We investigated the relation between X-ray emission and the mass of component stars in the binary systems. We also performed sample simulations to explore the degeneracy between period, mass, and effective temperature for EWXs. Results. We find strong P–log LX and P–log(LX/Lbol) correlations for EWXs with P ≲ 0.44 days and we provide the linear parametrizations for these relations, on the basis of which the orbital period can be treated as a good predictor for log LX and log(LX/Lbol). The aforementioned binary stellar parameters are all correlated with log LX, while only Teff exhibits a strong correlation with log(LX/Lbol). Then, EWXs with higher temperature show lower X-ray activity level, which could indicate the thinning of the convective area related to the magnetic dynamo mechanism. The total X-ray luminosity of an EWX is essentially consistent with that of an X-ray saturated main sequence star with the same mass as its primary, which may imply that the primary star dominates the X-ray emission. The monotonically decreasing P–log(LX/Lbol) relation and the short orbital periods indicate that EWXs could all be in the X-ray saturated state, and they may inherit the changing trend of the saturated X-ray luminosities along with the mass shown by single stars. For EWXs, the orbital period, mass, and effective temperature increase in concordance. We demonstrate that the period P = 0.44 days corresponds to the primary mass of ∼1.1 M, beyond which the saturated X-ray luminosity of single stars will not continue to increase with mass. This explains the break in the positive P–log LX relation for EWXs with P >  0.44 days.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Twelve Potential Merger Candidate Contact Binary Systems;Publications of the Astronomical Society of the Pacific;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3