Analytical simulations of the effect of satellite constellations on optical and near-infrared observations

Author:

Bassa C. G.ORCID,Hainaut O. R.ORCID,Galadí-Enríquez D.ORCID

Abstract

Context. The number of satellites in low-Earth orbit is increasing rapidly and many tens of thousands of satellites are expected to be launched in the coming years. There is a strong concern among the astronomical community about the contamination of optical and near-infrared observations by satellite trails, what has led to several initial investigations of the impact of large satellite constellations. Aims. We expand the impact analysis of such constellations on ground-based optical and near-infrared astronomical observations in a more rigorous and quantitative way, using updated constellation information and considering imagers and spectrographs and their very different characteristics. Methods. We introduce an analytical method that allows us to rapidly and accurately evaluate the effect of a very large number of satellites, accounting for their magnitudes and the effect of trailing of the satellite image during the exposure. We use this to evaluate the impact on a series of representative instruments, including imagers (traditional narrow field instruments, wide-field survey cameras, and astro-photographic cameras) and spectrographs (long-slit and fibre-fed), taking their limiting magnitude into account. Results. Confirming earlier findings, the effect of satellite trails is more damaging for high-altitude satellites, on wide-field instruments, or essentially during the first and last hours of the night. Thanks to their brighter limiting magnitudes, low- and mid-resolution spectrographs will be less affected, but the contamination will be at about the same level as that of the science signal, introducing additional challenges. High-resolution spectrographs will essentially be immune. We propose a series of mitigating measures, including one that uses the described simulation method to optimise the scheduling of the observations. We conclude that no single mitigation measure will solve the problem of satellite trails for all instruments and all science cases.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference28 articles.

1. de Jong R. S., Barden S. C., Bellido-Tirado O., et al. 2016, in Ground-based and Airborne Instrumentation for Astronomy VI, eds. Evans C. J., Simard L., & Takami H., SPIE Conf. Ser., 9908, 99081O

2. Dekker H., D’Odorico S., Kaufer A., Delabre B., & Kotzlowski H. 2000, in Optical and IR Telescope Instrumentation and Detectors, eds. Iye M., & Moorwood A. F., SPIE Conf. Ser., 4008, 534

3. Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3