The ionised and molecular mass of post-common-envelope planetary nebulae

Author:

Santander-García M.ORCID,Jones D.,Alcolea J.,Bujarrabal V.,Wesson R.

Abstract

Context. Most planetary nebulae (PNe) show beautiful, axisymmetric morphologies despite their progenitor stars being essentially spherical. Close binarity is widely invoked to help eject an axisymmetric nebula, after a brief phase of engulfment of the secondary within the envelope of the asymptotic giant branch (AGB) star, known as the common envelope (CE). The evolution of the AGB would thus be interrupted abruptly, with its still quite massive envelope being rapidly ejected to form the PN, which a priori would be more massive than the PN coming from a single version of the same star. Aims. We aim to test this hypothesis by investigating the ionised and molecular masses of a sample consisting of 21 post-CE PNe, roughly one-fifth of the known total population of these objects, and to compare them to a large sample of ‘regular’ (i.e. not known to arise from close-binary systems) PNe. Methods. We gathered data on the ionised and molecular content of our sample from the literature, and carried out molecular observations of several previously unobserved objects. We derived the ionised and molecular masses of the sample by means of a systematic approach, using tabulated, dereddened fluxes to find the ionised mass, and 12CO J = 2–1 and J = 3–2 observations to estimate the molecular mass. Results. There is a general lack of molecular content in post-CE PNe. Our observations only reveal molecule-rich gas around NGC 6778, which is distributed into a low-mass, expanding equatorial ring lying beyond the ionised broken ring previously observed in this nebula. The only two other objects showing molecular content (from the literature) are NGC 2346 and NGC 7293. Once we derive the ionised and molecular masses, we find that post-CE PNe arising from single-degenerate (SD) systems are just as massive, on average, as members of the ‘regular’ PNe sample, whereas post-CE PNe arising from double-degenerate systems are considerably more massive, and show substantially higher linear momentum and kinetic energy than SD systems and ‘regular’ PNe. Reconstruction of the CE of four objects, for which a wealth of data on the nebulae and complete orbital parameters are available, further suggests that the mass of SD nebulae actually amounts to a very small fraction of the envelope of their progenitor stars. This leads to the uncomfortable questions of where the rest of the envelope is and why we cannot detect it in the stars’ vicinity, raising serious doubts about our understanding of these intriguing objects.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3