Revealing new high-redshift quasar populations through Gaussian mixture model selection

Author:

Wagenveld J. D.,Saxena A.,Duncan K. J.,Röttgering H. J. A.,Zhang M.

Abstract

We present a novel method for identifying candidate high-redshift quasars (HzQs; z ≳ 5.5) –which are unique probes of supermassive black hole growth in the early Universe– from large-area optical and infrared photometric surveys. Using Gaussian mixture models to construct likelihoods and incorporating informed priors based on population statistics, our method uses a Bayesian framework to assign posterior probabilities that differentiate between HzQs and contaminating sources. We additionally include deep radio data to obtain informed priors. Using existing HzQ data in the literature, we set a posterior threshold that accepts ∼90% of known HzQs while rejecting > 99% of contaminants such as dwarf stars or lower redshift galaxies. Running the probability selection on test samples of simulated HzQs and contaminants, we find that the efficacy of the probability method is higher than traditional colour cuts, decreasing the fraction of accepted contaminants by 86% while retaining a similar fraction of HzQs. As a test, we apply our method to the Pan-STARRS Data Release 1 (PS1) source catalogue within the HETDEX Spring field area on the sky, covering 400 sq. deg. and coinciding with deep radio data from the LOFAR Two-metre Sky Survey Data Release 1. From an initial sample of ∼5 × 105 sources in PS1, our selection shortlists 251 candidate HzQs, which are further reduced to 63 after visual inspection. Shallow spectroscopic follow-up of 13 high-probability HzQs resulted in the confirmation of a previously undiscovered quasar at z = 5.66 with photometric colours i − z = 1.4, lying outside the typically probed regions when selecting HzQs based on colours. This discovery demonstrates the efficacy of our probabilistic HzQ selection method in selecting more complete HzQ samples, which holds promise when employed on large existing and upcoming photometric data sets.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3