The incompressible energy cascade rate in anisotropic solar wind turbulence

Author:

Andrés N.ORCID,Sahraoui F.,Huang S.,Hadid L. Z.ORCID,Galtier S.ORCID

Abstract

Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade according to the parallel and perpendicular directions with respect to magnetic guide field. Aims. Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are investigated. The variance and normalized fluctuation ratios, the kinetic and magnetic energies, and the normalized cross-helicity and residual energy are studied. The connection between the heliocentric distance, the local temperature of the plasma, and the energy cascade components is made. Methods. Using exact relations for fully developed incompressible magnetohydrodynamic (MHD) turbulence, the incompressible energy cascade rate is computed. In particular, using the isotropy and 2D and slab assumptions, the isotropic, perpendicular, and parallel energy cascade rate components are estimated. Results. The variance anisotropy ratios, for both velocity and magnetic fields, do not exhibit a dependence with respect to the heliocentric distance r between 0.2 and 0.8 au. While the velocity normalized fluctuation ratio shows a dependence with r, the magnetic normalized fluctuation ratio does not. A strong correlation between the isotropic and anisotropic energy cascade rates and the temperature is found. A clear dominance of the perpendicular cascades over the parallel cascades as PSP approaches the Sun is observed. A dominant 2D cascade and/or geometry over the slab component in slow solar wind turbulence in the largest MHD scales is observed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3