Galactic center gamma-ray production by cosmic rays from stellar winds and Sgr A East

Author:

Scherer Andrés,Cuadra Jorge,Bauer Franz E.

Abstract

Context. The High Energy Stereoscopic System, the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope, and the Very Energetic Radiation Imaging Telescope Array System have observed diffuse gamma-ray emission strongly correlated with the central molecular zone in the Galactic center. The most accepted scenario to generate this emission is via a hadronic interaction between cosmic rays (CRs) and ambient gas, where CRs are accelerated from a central and continuous source of 1 PeV protons. Aims. We explore the influence of the three-dimensional (3D) shape of the central molecular zone on the indirect observation of the CR energy density via gamma-ray detection. Methods. We simulated synthetic gamma-ray maps using a CR diffusion model with spherical injection, one isotropic diffusion coefficient, no advection, and mono-energetic particles of 1 PeV. Also, we used two different 3D gas distributions considering the observed gas column density, both with and without an inner cavity. Results. We find that when using a persistent CR source, a disk-like gas distribution is needed to reproduce the existing CR indirect observations. This is in agreement with the continuous gas distribution implied by some dynamical models and studies based on the comparison of emission and absorption molecular lines. However, it contradicts several models of the central molecular zone, which imply that this structure has a significant inner cavity. This tension can be reconciled by an additional, impulsive CR injection. Conclusions. If the central molecular zone has a cavity, a composite CR population, coming from the stellar winds of the Wolf-Rayet stars in the central 0.5 pc and the supernova Sgr A East, produces a good match to the observed gamma-ray morphology in the Galactic center.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3