Polarization power spectra and dust cloud morphology

Author:

Konstantinou A.,Pelgrims V.ORCID,Fuchs F.,Tassis K.ORCID

Abstract

Context In the framework of studying cosmic microwave background polarization and characterizing its Galactic foregrounds, the angular power spectrum analysis of the thermal dust polarization map has led to intriguing evidence of an E/B asymmetry and a positive TE correlation. The interpretation of these observations is the subject of theoretical and simulation-driven studies in which the correlation between the density structure of the interstellar medium (ISM) and the magnetic field appears to be a key aspect. In this context, and when the magnetized ISM structures are modeled in three dimensions, dust clouds are generally considered to be filamentary structures only, but both filamentary and sheet-like shapes are supported by observational and theoretical evidence. Aims. We aim to study the influence of the cloud shape and its connection to the local magnetic field, as well as the influence from the viewing angle, on the angular power spectra measured on thermal dust polarization maps; we specifically focus on the dependence of the E/B power asymmetry and TE correlation. Methods. To this end, we simulated realistic interstellar clouds with both filament-like and sheet-like shapes using the software Asterion, which also allowed us to generate synthetic maps of thermal dust polarized emission with an area of 400 square degrees. Then, we computed their polarization power spectra in the multipole range ϵ [100, 500] and focused on the E/B power asymmetry, quantified through the EB ratio, and the correlation coefficient rTE between Τ and Ε modes. We quantified the dependence of EB and rTE values on the offset angle (between the longest cloud axis and local magnetic field lines) and inclination angle (between the line of sight and the magnetic field) for both types of cloud shapes, either embedded in a regular magnetic field or coupled to a nonregular field to mimic turbulence. Results. We find that both types of cloud shapes cover the same regions of the (ℛEB, rTE) parameter space. The dependence on the inclination and offset angles is similar for both shapes, although sheet-like structures generally show larger scatter than filamentary structures. In addition to the known dependence on the offset angle, we find a strong dependence of ℛEB and rTE on the inclination angle. Conclusions. The very fact that filament-like and sheet-like structures may lead to polarization power spectra with similar (ℛEB,rTE) values complicates their interpretation. We argue that interpreting them solely in terms of filament characteristics is risky, and in future analyses, this degeneracy should be accounted for, as should the connection to the magnetic field geometry. Our results based on maps of 400 square degrees clarify that the overall geometrical arrangement of the magnetized ISM surrounding the observer leaves its marks on polarization power spectra.

Funder

European Research Council

Hellenic Foundation for Research and Innovation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference76 articles.

1. Dust polarization modelling at large scale over the northern Galactic cap using EBHIS and Planck data

2. The Local Bubble: a magnetic veil to our Galaxy

3. Interstellar Dust Grain Alignment

4. André P., Di Francesco J., Ward-Thompson D., et al. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson: University of Arizona Press), 27

5. First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3