Constraining the radio properties of the z = 6.44 QSO VIK J2318−3113

Author:

Ighina LucaORCID,Leung James K.ORCID,Broderick Jess W.ORCID,Drouart Guillaume,Seymour NickORCID,Belladitta SilviaORCID,Caccianiga AlessandroORCID,Lenc EmilORCID,Moretti AlbertoORCID,An TaoORCID,Galvin Tim J.ORCID,Heald George H.,Huynh Minh T.,McConnell David,Murphy TaraORCID,Pritchard Joshua,Quici Benjamin,Shabala Stas S.,Tingay Steven J.ORCID,Turner Ross J.ORCID,Wang YuanmingORCID,White Sarah V.ORCID

Abstract

The recent detection of the quasi-stellar object (QSO) VIKING J231818.3−311346 (hereafter VIK J2318−3113) at redshift z = 6.44 in the Rapid ASKAP Continuum Survey (RACS) uncovered its radio-loud nature, making it one of the most distant known to date in this class. By using data from several radio surveys of the Galaxy And Mass Assembly 23h field and from a dedicated follow-up, we were able to constrain the radio spectrum of VIK J2318−3113 in the observed range ∼0.1–10 GHz. At high frequencies (0.888–5.5 GHz in the observed frame) the QSO presents a steep spectrum (αr = 1.24, with Sν ∝ ναr), while at lower frequencies (0.4–0.888 GHz in the observed frame) it is nearly flat. The overall spectrum can be modelled by either a curved function with a rest-frame turnover around 5 GHz, or with a smoothly varying double power law that is flat below a rest-frame break frequency of about 20 GHz and above which it significantly steepens. Based on the model adopted, we estimated that the radio jets of VIK J2318−3113 must be a few hundred years old in the case of a turnover, or less than a few × 104 years in the case of a break in the spectrum. Having multiple observations at two frequencies (888 MHz and 5.5 GHz), we further investigated the radio variability previously reported for this source. We found that the marginally significant flux density variations are consistent with the expectations from refractive interstellar scintillation, even though relativistic effects related to the orientation of the source may still play a non-negligible role. Further radio and X-ray observations are required to conclusively discern the nature of this variation.

Funder

ASI-INAF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3