Revisiting the abundance pattern and charge-exchange emission in the centre of M 82

Author:

Fukushima K.ORCID,Kobayashi S. B.ORCID,Matsushita K.ORCID

Abstract

Context. The interstellar medium (ISM) in starburst galaxies contains many chemical elements that are synthesised by core-collapse supernova explosions. By measuring the abundances of these metals, we can study the chemical enrichment within the galaxies and the transportation of metals into the circumgalactic environment through powerful outflows. Aims. We performed a spectral analysis of the X-ray emissions from the core of M 82 using the Reflection Grating Spectrometer (RGS) on board XMM-Newton to accurately estimate the metal abundances in the ISM. Methods. We analysed over 300 ks of RGS data observed with 14 position angles, covering a cross-dispersion width of 80 arcsec. We employed multi-temperature thermal plasma components in collisional ionisation equilibrium (CIE) to reproduce the observed spectra, each of which exhibited a different spatial broadening. Results. The O VII band CCD image shows a broader distribution that those for the O VIII and Fe-L bands. The O VIII line profiles have a prominent double-peaked structure that corresponds to the north- and southward outflows. The O VII triplet feature exhibits marginal peaks. A single CIE component that is convolved with the O VII band image approximately reproduces the spectral shape. A CIE model combined with a charge-exchange emission model also successfully reproduces the O VII line profiles. However, the ratio of these two components varies significantly with the observed position angles, which is physically implausible. Spectral fitting of the broadband spectra suggests a multi-temperature phase in the ISM that is approximated by three components at 0.1, 0.4, and 0.7 keV. Notably, the 0.1 keV component exhibits a broader distribution than the 0.4 and 0.7 keV plasmas. The derived abundance pattern shows super-solar N/O, solar Ne/O and Mg/O, and half-solar Fe/O ratios. These results indicate the chemical enrichment by core-collapse supernovae in starburst galaxies.

Funder

Japan Society for the Promotion of Science

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3