Quasi-perpendicular shocks of galaxy clusters in hybrid kinetic simulations

Author:

Boula S. S.ORCID,Niemiec J.ORCID,Amano T.ORCID,Kobzar O.ORCID

Abstract

Context. Cosmic ray acceleration in galaxy clusters is still an ongoing puzzle, with relativistic electrons forming radio relics at merger shocks and emitting synchrotron radiation. These shocks are also potential sources of ultra-high-energy cosmic rays, gamma rays, and neutrinos. Our recent work focuses on electron acceleration at low Mach number merger shocks in the hot intracluster medium which is characterized by high plasma beta. Using particle-in-cell (PIC) simulations, we previously showed that electrons are energized through the stochastic shock-drift acceleration process, which is facilitated by multi-scale turbulence, including ion-scale shock surface rippling. For the present work, we performed hybrid-kinetic simulations in a range of various quasi-perpendicular foreshock conditions, including plasma beta, magnetic obliquity, and the shock Mach number. Aims. We study the ion kinetic physics, which is responsible for the shock structure and wave turbulence, that in turn affects the particle acceleration processes. We cover the spatial and temporal scales, which allow the development of large-scale ion turbulence modes in the system. Methods. We applied a recently developed generalized fluid-particle hybrid numerical code that can combine fluid modeling for both electrons and ions with an arbitrary number of kinetic species. We limited this model to a standard hybrid simulation configuration with kinetic ions and fluid electrons. The model utilizes the exact form of the generalized Ohm’s law, allowing for an arbitrary choice of mass and energy densities, as well as the charge-to-mass ratio of the kinetic species. Results. We show that the properties of ion-driven multi-scale magnetic turbulence in merger shocks are in agreement with the ion structures observed in PIC simulations. In typical shocks with the sonic Mach number Ms = 3, the magnetic structures and shock front density ripples grow and saturate at wavelengths reaching approximately four ion Larmor radii. Only shocks with Ms ≳ 2.3 develop ripples. At very weak shocks with Ms ≲ 2.3, weak turbulence is formed downstream of the shock. We observed a moderate dependence of the strength of magnetic field fluctuations on the quasi-perpendicular magnetic field obliquity. However, as the field obliquity decreases, the shock front ripples exhibit longer wavelengths. Finally, we note that the steady-state structure of Ms = 3 shocks in high-beta plasmas shows evidence that there is little difference between 2D and 3D simulations. The turbulence near the shock front seems to be a 2D-like structure in 3D simulations.

Funder

Narodowe Centrum Nauki

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3