Chronology of our Galaxy from Gaia colour–magnitude diagram fitting (ChronoGal)

Author:

Gallart CarmeORCID,Surot Francisco,Cassisi SantiORCID,Fernández-Alvar EmmaORCID,Mirabal DavidORCID,Rivero AliciaORCID,Ruiz-Lara TomásORCID,Santos-Torres JudithORCID,Aznar-Menargues GuillemORCID,Battaglia GiuseppinaORCID,Queiroz Anna B.ORCID,Monelli MatteoORCID,Vasiliev EugeneORCID,Chiappini CristinaORCID,Helmi Amina,Hill Vanessa,Massari DavideORCID,Thomas Guillaume F.ORCID

Abstract

Context. The study of the Milky Way is living a golden era thanks to the enormous high-quality datasets delivered by Gaia, and space asteroseismic and ground-based spectroscopic surveys. However, the current major challenge to reconstructing the chronology of the Milky Way is the difficulty to derive precise stellar ages for large samples of stars. The colour–magnitude diagram (CMD) fitting technique offers an alternative to individual age determinations to derive the star formation history (SFH) of complex stellar populations. Aims. Our aim is to obtain a detailed dynamically evolved SFH (deSFH) of the solar neighbourhood, and the age and metallicity distributions that result from it. We define deSFH as the amount of mass transformed into stars, as a function of time and metallicity, in order to account for the population of stars contained in a particular volume. Methods. We present a new package to derive SFHs from CMD fitting tailored to work with Gaia data, called CMDft.Gaia, and we use it to analyse the CMD of the Gaia Catalogue of Nearby Stars (GCNS), which contains a complete census of the (mostly thin disc) stars currently within 100 pc of the Sun. Results. We present an unprecedentedly detailed view of the evolution of the Milky Way disc at the solar radius. The bulk of star formation started 11–10.5 Gyr ago at metallicity around solar, and continued with a slightly decreasing metallicity trend until 6 Gyr ago. Between 6 and 4 Gyr ago, a notable break in the age–metallicity distribution is observed, with three stellar populations with distinct metallicities (sub-solar, solar, and super-solar), possibly indicating some dramatic event in the life of our Galaxy. Star formation then resumed 4 Gyr ago with a somewhat bursty behaviour, metallicity near solar and average star formation rate higher than in the period before 6 Gyr ago. The derived metallicity distribution closely matches precise spectroscopic data, which also show stellar populations deviating from solar metallicity. Interestingly, our results reveal the presence of intermediate-age populations exhibiting both a metallicity typical of the thick disc, approximately [M/H] ≃ −0.5, and super-solar metallicity. Conclusions. The many tests performed indicate that, with high-precision photometric and distance data such as that provided by Gaia, CMDft.Gaia is able to achieve a precision of ≲10% and an accuracy better than 6% in the dating of stellar populations, even at old ages. A comparison with independent spectroscopic metallicity information shows that metallicity distributions are also determined with high precision, without imposing any a priori metallicity information in the fitting process. This opens the door to obtaining detailed and robust information on the evolution of the stellar populations of the Milky Way over cosmic time. As an example, we provide in this paper an unprecedentedly detailed view of the age and metallicity distributions of the stars within 100 pc of the Sun.

Funder

Agencia Estatal de Investigación

Ministerio de Ciencia e Innovación

PRIN-MIUR-22

Fundación Jesús Serra

Istituto Nazionale di Astrofisica

Agencia estatal de investigacion

Agence Nationale de la Recherche

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3