Evidence for line-of-sight frequency decorrelation of polarized dust emission in Planck data

Author:

Pelgrims V.ORCID,Clark S. E.ORCID,Hensley B. S.ORCID,Panopoulou G. V.ORCID,Pavlidou V.ORCID,Tassis K.ORCID,Eriksen H. K.ORCID,Wehus I. K.

Abstract

If a single line of sight (LOS) intercepts multiple dust clouds with different spectral energy distributions and magnetic field orientations, then the frequency scaling of each of the Stokes Q and U parameters of the thermal dust emission may be different, a phenomenon we refer to as LOS frequency decorrelation. We present first evidence for LOS frequency decorrelation in Planck data using independent measurements of neutral-hydrogen (HI) emission to probe the 3D structure of the magnetized interstellar medium (ISM). We use HI-based measurements of the number of clouds per LOS and the magnetic field orientation in each cloud to select two sets of sightlines: (i) a target sample of pixels that are likely to exhibit LOS frequency decorrelation and (ii) a control sample of pixels that lack complex LOS structure. We test the null hypothesis that LOS frequency decorrelation is not detectable in Planck 353 and 217 GHz polarization data at high Galactic latitudes. We reject the null hypothesis at high significance based on data that show that the combined effect of polarization angle variation with frequency and depolarization are detected in the target sample. This detection is robust against the choice of cosmic microwave background (CMB) map and map-making pipeline. The observed change in polarization angle due to LOS frequency decorrelation is detectable above the Planck noise level. The probability that the detected effect is due to noise alone ranges from 5 × 10−2 to 4 × 10−7, depending on the CMB subtraction algorithm and treatment of residual systematic errors; correcting for residual systematic errors consistently increases the significance of the effect. Within the target sample, the LOS decorrelation effect is stronger for sightlines with more misaligned magnetic fields, as expected. With our sample, we estimate that an intrinsic variation of ~15% in the ratio of 353 to 217 GHz polarized emission between clouds is sufficient to reproduce the measured effect. Our finding underlines the importance of ongoing studies to map the three-dimensional structure of the magnetized and dusty ISM that could ultimately help component separation methods to account for frequency decorrelation effects in CMB polarization studies.

Funder

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programm

NASA through the NASA Hubble Fellowship

Foundation of Research and Technology - Hellas Synergy Grants Program

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference64 articles.

1. Abazajian K. N., Adshead P., Ahmed Z., et al. 2016, arXiv e-prints [arXiv:1610.02743]

2. The Simons Observatory: science goals and forecasts

3. BICEP2 Collaboration & Keck Array Collaboration 2018, Phys. Rev. Lett., 121, 221301

4. The galactic fountain of high-velocity clouds

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3