Organised randoms: Learning and correcting for systematic galaxy clustering patterns in KiDS using self-organising maps

Author:

Johnston Harry,Wright Angus H.,Joachimi Benjamin,Bilicki Maciej,Elisa Chisari Nora,Dvornik Andrej,Erben Thomas,Giblin Benjamin,Heymans Catherine,Hildebrandt Hendrik,Hoekstra Henk,Joudaki Shahab,Vakili Mohammadjavad

Abstract

We present a new method for the mitigation of observational systematic effects in angular galaxy clustering through the use of corrective random galaxy catalogues. Real and synthetic galaxy data from the Kilo Degree Survey’s (KiDS) 4th Data Release (KiDS-1000) and the Full-sky Lognormal Astro-fields Simulation Kit package, respectively, are used to train self-organising maps to learn the multivariate relationships between observed galaxy number density and up to six systematic-tracer variables, including seeing, Galactic dust extinction, and Galactic stellar density. We then create ‘organised’ randoms; random galaxy catalogues with spatially variable number densities, mimicking the learnt systematic density modes in the data. Using realistically biased mock data, we show that these organised randoms consistently subtract spurious density modes from the two-point angular correlation function w(ϑ), correcting biases of up to 12σ in the mean clustering amplitude to as low as 0.1σ, over an angular range of 7 − 100 arcmin with high signal-to-noise ratio. Their performance is also validated for angular clustering cross-correlations in a bright, flux-limited subset of KiDS-1000, comparing against an analogous sample constructed from highly complete spectroscopic redshift data. Each organised random catalogue object is a clone carrying the properties of a real galaxy, and is distributed throughout the survey footprint according to the position of the parent galaxy in systematics space. Thus, sub-sample randoms are readily derived from a single master random catalogue through the same selection as applied to the real galaxies. Our method is expected to improve in performance with increased survey area, galaxy number density, and systematic contamination, making organised randoms extremely promising for current and future clustering analyses of faint samples.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3