The TOPGöt high-mass star-forming sample

Author:

Mininni C.ORCID,Fontani F.ORCID,Sánchez-Monge A.ORCID,Rivilla V. M.ORCID,Beltrán M. T.ORCID,Zahorecz S.ORCID,Immer K.,Giannetti A.,Caselli P.,Colzi L.ORCID,Testi L.,Elia D.ORCID

Abstract

Aims. The TOPGöt project studies a sample of 86 high-mass star-forming regions in different evolutionary stages from starless cores to ultra compact HII regions. The aim of the survey is to analyze different molecular species in a statistically significant sample to study the chemical evolution in high-mass star-forming regions, and identify chemical tracers of the different phases. Methods. The sources have been observed with the IRAM 30 m telescope in different spectral windows at 1, 2, and 3 mm. In this first paper, we present the sample and analyze the spectral energy distributions (SEDs) of the TOPGöt sources to derive physical parameters such as the dust temperature, Tdust, the total column density, NH2, the mass, M, the luminosity, L, and the luminosity-to-mass ratio, LM, which is an indicator of the evolutionary stage of the sources. We use the MADCUBA software to analyze the emission of methyl cyanide (CH3CN), a well-known tracer of high-mass star formation. Results. We built the spectral energy distributions for ~80% of the sample and derived Tdust and NH2 values which range between 9−36 K and ~3 × 1021−7 × 1023 cm−2, respectively. The luminosity of the sources spans over four orders of magnitude from 30 to 3 × 105 L, masses vary between ~30 and 8 × 103 M, and the luminosity-to-mass ratio LM covers three orders of magnitude from 6 × 10−2 to 3 × 102 LM. The emission of the CH3CN(5K-4K) K-transitions has been detected toward 73 sources (85% of the sample), with 12 nondetections and one source not observed in the frequency range of CH3CN(5K-4K). The emission of CH3CN has been detected toward all evolutionary stages, with the mean abundances showing a clear increase of an order of magnitude from high-mass starless cores to later evolutionary stages. We found a conservative abundance upper limit for high-mass starless cores of XCH3CN < 4.0 × 10−11, and a range in abundance of 4.0 × 10−11 < XCH3CN < 7.0 × 10−11 for those sources that are likely high-mass starless cores or very early high-mass protostellar objects. In fact, in this range of abundance we have identified five sources previously not classified as being in a very early evolutionary stage. The abundance of CH3CN can thus be used to identify high-mass star-forming regions in early phases of star-formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3