Luminous efficiency based on FRIPON meteors and limitations of ablation models
-
Published:2021-06
Issue:
Volume:650
Page:A159
-
ISSN:0004-6361
-
Container-title:Astronomy & Astrophysics
-
language:
-
Short-container-title:A&A
Author:
Drolshagen E.ORCID, Ott T., Koschny D., Drolshagen G., Vaubaillon J., Colas F., Zanda B., Bouley S., Jeanne S., Malgoyre A., Birlan M., Vernazza P., Gardiol D., Nedelcu D. A., Rowe J., Forcier M., Trigo-Rodriguez J. M., Peña-Asensio E., Lamy H., Ferrière L., Barghini D., Carbognani A., Di Martino M., Rasetti S., Valsecchi G. B., Volpicelli C. A., Di Carlo M., Knapic C., Pratesi G., Riva W., Stirpe G. M., Zorba S., Hernandez O., Grandchamps A., Jehin E., Jobin M., King A., Sanchez-Lavega A., Toni A., Rimola A., Poppe B.
Abstract
Context. In meteor physics, the luminous efficiency τ is used to convert the meteor’s magnitude to the corresponding meteoroid’s mass. However, a lack of sufficiently accurate verification methods or adequate laboratory tests mean that discussions around this parameter are a subject of controversy.
Aims. In this work, we aim to use meteor data obtained by the Fireball Recovery and InterPlanetary Observation to calculate the luminous efficiencies of the recorded meteors. We also show the limitations of the methods presented herein.
Methods. Deceleration-based formulas were used to calculate the masses of the pre-atmospheric meteoroids. These can in turn be compared to the meteor brightnesses to assess the luminous efficiencies of the recorded objects. Fragmentation of the meteoroids is not considered within this model. Good measurements of the meteor deceleration are required.
Results. We find τ-values, as well as the shape change coefficients, of 294 meteors and fireballs with determined masses in the range of 10−6–100 kg. The derived τ-values have a median of τmedian = 2.17%. Most of them are of the order of 0.1–10%. We present how our values are obtained, compare them with data reported in the literature, and discuss several methods. A dependence of τ on the pre-atmospheric velocity of the meteor, ve, is noticeable with a relation of τ = 0.0023⋅ve2.3. Furthermore, a dependence of τ on the initial meteoroid mass, Me, is found with negative linear behaviour in log–log space: τ = 0.48⋅Me−0.47.
Conclusions. The higher luminous efficiency of fast meteors could be explained by the higher amount of energy released. Fast meteoroids produce additional emission lines that radiate more efficiently in specific wavelengths due to the appearance of the so-called second component of higher temperature. Furthermore, the negative dependence of τ on Me implies that the radiation of smaller meteoroids is more efficient. The results of this study also show the limitations of the ablation-based model for the determination of the luminous efficiency.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Reference75 articles.
1. Audureau Y.,
Marmo C.,
Bouley S., et al.
2014,
Proceedings of the International Meteor Conference 2014, eds.
Rault J.-L., &
Roggemans P., 39 2. Ayers W. G.,
McCrosky R. E., &
Shao C.-Y.
1970,
SAO Special Report #317 3. THE COLLISIONAL EVOLUTION OF UNDIFFERENTIATED ASTEROIDS AND THE FORMATION OF CHONDRITIC METEOROIDS 4. The Physics of Protoplanetesimal Dust Agglomerates. I. Mechanical Properties and Relations to Primitive Bodies in the Solar System
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|