HD 142527: quantitative disk polarimetry with SPHERE

Author:

Hunziker S.ORCID,Schmid H. M.,Ma J.,Menard F.,Avenhaus H.,Boccaletti A.,Beuzit J. L.,Chauvin G.,Dohlen K.,Dominik C.,Engler N.,Ginski C.,Gratton R.,Henning T.,Langlois M.,Milli J.,Mouillet D.,Tschudi C.,van Holstein R. G.,Vigan A.

Abstract

Aims. We present high-precision photometry and polarimetry based on visual and near-infrared imaging data for the protoplanetary disk surrounding the Herbig Ae/Be star HD 142527, with a strong focus on determining the light scattering parameters of the dust located at the surface of the large outer disk. Methods. We re-reduced existing polarimetric differential imaging data of HD 142527 in the VBB (735 nm) and H-band (1625 nm) from the ZIMPOL and IRDIS subinstruments of SPHERE at the VLT. With polarimetry and photometry based on reference star differential imaging (RDI), we were able to measure the linearly polarized intensity and the total intensity of the light scattered by the circumstellar disk with high precision. We used simple Monte Carlo simulations of multiple light scattering by the disk surface to derive constraints for three scattering parameters of the dust: the maximum polarization of the scattered light Pmax, the asymmetry parameter g, and the single-scattering albedo ω. Results. We measure a reflected total intensity of 51.4 ± 1.5 mJy and 206 ± 12 mJy and a polarized intensity of 11.3 ± 0.3 mJy and 55.1 ± 3.3 mJy in the VBB and H-band, respectively. We also find in the visual range a degree of polarization that varies between 28% on the far side of the disk and 17% on the near side. In the H-band, the degree of polarization is consistently higher by about a factor of 1.2. The disk also shows a red color for the scattered light intensity and the polarized intensity, which are about twice as high in the near-infrared when compared to the visual. We determine with model calculations the scattering properties of the dust particles and find evidence for strong forward scattering (g ≈ 0.5–0.75), relatively low single-scattering albedo (ω ≈ 0.2–0.5), and high maximum polarization (Pmax ≈ 0.5–0.75) at the surface on the far side of the disk for both observed wavelengths. The optical parameters indicate the presence of large aggregate dust particles, which are necessary to explain the high maximum polarization, the strong forward-scattering nature of the dust, and the observed red disk color.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viscous circumbinary protoplanetary discs – I. Structure of the inner cavity;Monthly Notices of the Royal Astronomical Society;2024-07-10

2. The SPHERE view of the Chamaeleon I star-forming region;Astronomy & Astrophysics;2024-05

3. Polarimetric differential imaging with VLT/NACO;Astronomy & Astrophysics;2024-04

4. Polarization analysis of the VLTI and GRAVITY;Astronomy & Astrophysics;2024-01

5. Quantitative polarimetry for the transition disk in RX J1604.3-213010;Astronomy & Astrophysics;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3