Multi-instrumental view of magnetic fields and activity of ϵ Eridani with SPIRou, NARVAL, and TESS

Author:

Petit P.ORCID,Folsom C. P.,Donati J.-F.,Yu L.,do Nascimento J.-D.,Jeffers S. V.,Marsden S. C.,Morin J.,Vidotto A. A.

Abstract

Aims. We report on observations of the active K2 dwarf ϵ Eridani based on contemporaneous SPIRou, NARVAL and TESS data obtained over two months in late 2018, when the activity of the star was reported to be in a non-cyclic phase. Methods. Near-infrared (NIR) spectropolarimetry was obtained using SPIRou over four nights in late September, while visible spectropolarimetry was collected with NARVAL over 20 nights, spread between 18 September and 07 November. We first recovered the fundamental parameters of the target from both visible and NIR spectral fitting. The large-scale magnetic field was investigated from polarimetric data. From unpolarized spectra, we estimated the total magnetic flux through Zeeman broadening of magnetically sensitive NIR lines and the chromospheric emission using the CaII H&K lines. The photometric monitoring, secured with TESS between 19 October and 15 November, is modelled with pseudo-periodic Gaussian process regression. Results. Fundamental parameters of ϵ Eridani derived from visible and NIR wavelengths provide us with consistent results, which also agree with published values. We report a progressive increase of macroturbulence towards larger NIR wavelengths. Zeeman broadening of individual lines highlights an unsigned surface magnetic field Bmono = 1.90 ± 0.13 kG, with a filling factor f = 12.5 ± 1.7% (unsigned magnetic flux Bf = 237 ± 36 G). The large-scale magnetic field geometry, chromospheric emission and broadband photometry display clear signs of non-rotational evolution over the course of data collection. Characteristic decay times deduced from the light curve and longitudinal field fall in the range 30–40 days, while the characteristic timescale of surface differential rotation, as derived through the evolution of the magnetic geometry, is equal to 57 ± 5 days. The large-scale magnetic field exhibits a combination of properties not observed previously for ϵ Eridani, with a surface field among the weakest previously reported, but this field is also mostly axisymmetric, and is dominated by a toroidal component.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3