Tracking down the origin of superbubbles and supergiant shells in the Magellanic Clouds with Minkowski tensor analysis

Author:

Collischon CarolineORCID,Sasaki ManamiORCID,Mecke Klaus,Points Sean D.ORCID,Klatt Michael A.ORCID

Abstract

Aims. We develop an automatic bubble-recognition routine based on Minkowski functionals (MF) and tensors (MT) to detect bubble-like interstellar structures in optical emission line images. Methods. Minkowski functionals and MT are powerful mathematical tools for parameterizing the shapes of bodies. Using the papaya2-library, we created maps of the desired MF or MT of structures at a given window size. We used maps of the irreducible MT ψ2, which is sensitive to elongation, to find filamentary regions in Hα, [S II], and [O III] images of the Magellanic Cloud Emission Line Survey. Using the phase of ψ2, we were able to draw lines perpendicular to each filament and thus obtain line-density maps. This allowed us to find the center of a bubble-like structure and to detect structures at different window sizes. Results. The detected bubbles in all bands are spatially correlated to the distribution of massive stars, showing that we indeed detect interstellar bubbles without large spatial bias. Eighteen out of 59 supernova remnants in the Large Magellanic Cloud (LMC) and 13 out of 20 superbubbles are detected in at least one wavelength. The lack of detection is mostly due to surrounding emission that disturbs the detection, a too small size, or the lack of a (circular) counterpart in our emission line images. In line-density maps at larger scales, maxima can be found in regions with high star formation in the past, often inside supergiant shells (SGS). In SGS LMC 2, there is a maximum west of the shell where a collision of large gas clouds is thought to have occurred. In the Small Magellanic Cloud (SMC), bubble detection is impaired by the more complex projected structure of the galaxy. Line maps at large scales show large filaments in the SMC in a north-south direction, especially in the [S II] image. The origin of these filaments is unknown.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3