Strong dependence of the physical properties of cores on spatial resolution in observations and simulations

Author:

Louvet F.ORCID,Hennebelle P.,Men’shchikov A.,Didelon P.,Ntormousi E.,Motte F.

Abstract

The angular resolution of a telescope is the primary observational parameter, along with the detector sensitivity in defining the quality of the observed images and of the subsequent scientific exploitation of the data. During the last decade in star formation research, many studies have targeted low- and high-mass star formation regions located at different distances, with different telescopes having specific angular resolution capabilities. However, no dedicated studies of the spatial resolution effects on the derived sizes and masses of the sources extracted from the observed images have been published. We present a systematic investigation of the angular resolution effects, with special attention being paid to the derived masses of sources as well as the shape of the resulting source mass functions (SMFs) and to their comparison with the initial stellar mass function. For our study, we chose two star-forming regions observed with Herschel, NGC 6334 and Aquila distant of 1750 and 460 pc respectively, and three (magneto)-hydrodynamical simulations, virtually positioned at the same distances as the observed regions. We built surface density maps with different angular resolutions by convolving the surface density images of the five regions to a set of four resolutions differing by a factor of two (9, 18, 36, and 72′′), which allowed us to cover spatial resolutions from 0.6 down to 0.02 pc. Then we detected and measured sources in each of the images at each resolution using getsf and we analysed the derived masses and sizes of the extracted sources. We find that the number of sources does not converge from 0.6 to ≳0.05 pc. It increases by about two when the angular resolution increases with a similar factor, which confirms that these large sources are cluster-forming clumps. Below 0.05 pc, the number of source still increases by about 1.3 when the angular resolution increases by two, suggesting that we are close to, but not yet at, convergence. In this regime of physical scales, we find that the measured sizes and masses of sources linearly depend on the angular resolution with no sign of convergence to a resolution-independent value, implying that these sources cannot be assimilated to isolated prestellar cores. The corresponding SMF peak also shifts with angular resolution, while the slope of the high-mass tail of the SMFs remains almost invariant. We propose that these angular resolution effects could be caused by the underestimated background of the unresolved sources observed against the sloping, hill-like backgrounds of the molecular clouds. If prestellar cores physically distinct from their background exist in cluster-forming molecular clouds, we conclude that their mass must be lower than reported so far in the literature. We discuss various implications for the studies of star formation: the problem of determining the mass reservoirs involved in the star-formation process; the inapplicability of the Gaussian beam deconvolution to infer source sizes; and the impossibility to determine the efficiency of the mass conversion from the cores to the stars. Our approach constitutes a simple convergence test to determine whether an observation is affected by angular resolution.

Funder

Marie Sklodowska-Curie Action

Programme national de physique stellaire

Physique chimie du milieu interstellaire

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3