The Alfvénic nature of chromospheric swirls

Author:

Battaglia Andrea FrancescoORCID,Canivete Cuissa José RobertoORCID,Calvo Flavio,Bossart Aleksi AntoineORCID,Steiner OskarORCID

Abstract

Context. Observations show that small-scale vortical plasma motions are ubiquitous in the quiet solar atmosphere. They have received increasing attention in recent years because they are a viable candidate mechanism for the heating of the outer solar atmospheric layers. However, the true nature and the origin of these swirls, and their effective role in the energy transport, are still unclear. Aims. We investigate the evolution and origin of chromospheric swirls by analyzing numerical simulations of the quiet solar atmosphere. In particular, we are interested in finding their relation with magnetic field perturbations and in the processes driving their evolution. Methods. The radiative magnetohydrodynamic code CO5BOLD is used to perform realistic numerical simulations of a small portion of the solar atmosphere, ranging from the top layers of the convection zone to the middle chromosphere. For the analysis, the swirling strength criterion and its evolution equation are applied in order to identify vortical motions and to study their dynamics. As a new criterion, we introduce the magnetic swirling strength, which allows us to recognize torsional perturbations in the magnetic field. Results. We find a strong correlation between swirling strength and magnetic swirling strength, in particular in intense magnetic flux concentrations, which suggests a tight relation between vortical motions and torsional magnetic field perturbations. Furthermore, we find that swirls propagate upward with the local Alfvén speed as unidirectional swirls driven by magnetic tension forces alone. In the photosphere and low chromosphere, the rotation of the plasma co-occurs with a twist in the upwardly directed magnetic field that is in the opposite direction of the plasma flow. All together, these are clear characteristics of torsional Alfvén waves. Yet, the Alfvén wave is not oscillatory but takes the form of a unidirectional pulse. The novelty of the present work is that these Alfvén pulses naturally emerge from realistic numerical simulations of the solar atmosphere. We also find indications of an imbalance between the hydrodynamic and magnetohydrodynamic baroclinic effects being at the origin of the swirls. At the base of the chromosphere, we find a mean net upwardly directed Poynting flux of 12.8 ± 6.5 kW m−2, which is mainly due to swirling motions. This energy flux is mostly associated with large and complex swirling structures, which we interpret as the superposition of various small-scale vortices. Conclusions. We conclude that the ubiquitous swirling events observed in numerical simulations are tightly correlated with perturbations of the magnetic field. At photospheric and chromospheric levels, they form Alfvén pulses that propagate upward and may contribute to chromospheric heating.

Funder

Swiss National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3