Oort cloud Ecology

Author:

Portegies Zwart Simon,Torres Santiago,Cai Maxwell X.,Brown Anthony G. A.

Abstract

Jan Hendrik Oort hypothesized the existence of a distant cloud of cometary objects that orbit the Sun based on a spike in the reciprocal orbital separation at 1∕a  ≲  10−4 au−1. The Oort cloud is the source of long-period comets, but has not been observed directly, and its origin remains theoretical. Theories on its origin evoke a sequence of events that have been tested individually but never as a consistent chronology. We present a chronology of the formation and early evolution of the Oort cloud, and test the sequence of events by simulating the formation process in subsequent amalgamated steps. These simulations start with the Solar System being born with planets and asteroids in a stellar cluster orbiting the Galactic center. Upon ejection from its birth environment, we continue to follow the evolution of the Solar System while it navigates the Galaxy as an isolated planetary system. We conclude that the range in semi-major axis between ~100 au and several ~103 au still bears the signatures of the Sun being born in a ≳1000 M pc−3 star cluster, and that most of the outer Oort cloud formed after the Solar System was ejected. The ejection of the Solar System, we argue, happened between ~20 Myr and 50 Myr after its birth. Trailing and leading trails of asteroids and comets along the Sun’s orbit in the Galactic potential are the by-product of the formation of the Oort cloud. These arms are composed of material that became unbound from the Solar System when the Oort cloud formed. Today, the bulk of the material in the Oort cloud (~70%) originates from the region in the circumstellar disk that was located between ~15 au and ~35 au, near the current location of the ice giants and the Centaur family of asteroids. According to our simulations, this population is eradicated if the ice-giant planets are born in orbital resonance. Planet migration or chaotic orbital reorganization occurring while the Solar System is still a cluster member is, according to our model, inconsistent with the presence of the Oort cloud. About half the inner Oort cloud, between 100 and 104 au, and a quarter of the material in the outer Oort cloud, ≳104 au, could be non-native to the Solar System but was captured from free-floating debris in the cluster or from the circumstellar disks of other stars in the birth cluster. Characterizing this population will help us to reconstruct the history of the Solar System.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oort Cloud and sednoid formation in an embedded cluster. II. Dynamics and orbital evolutions;Icarus;2024-03

2. The activity of 119 comets;Monthly Notices of the Royal Astronomical Society;2023-09-07

3. Not So Fast, Not So Furious: Just Magnetic;The Astrophysical Journal;2023-07-24

4. A halo of trapped interstellar matter surrounding the Solar system;Monthly Notices of the Royal Astronomical Society;2022-12-16

5. Destruction of astronomical systems: theory and observations;Physics-Uspekhi;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3