Probing core overshooting using subgiant asteroseismology: The case of KIC10273246

Author:

Noll A.ORCID,Deheuvels S.,Ballot J.

Abstract

Context. The size of convective cores remains uncertain, despite their substantial influence on stellar evolution, and thus on stellar ages. The seismic modeling of young subgiants can be used to obtain indirect constraints on the core structure during main sequence, thanks to the high probing potential of mixed modes. Aims. We selected the young subgiant KIC10273246, observed by Kepler, based on its mixed-mode properties. We thoroughly modeled this star, with the aim of placing constraints on the size of its main-sequence convective core. A corollary goal of this study is to elaborate a modeling technique that is suitable for subgiants and can later be applied to a larger number of targets. Methods. We first extracted the parameters of the oscillation modes of the star using the full Kepler data set. To overcome the challenges posed by the seismic modeling of subgiants, we propose a method that is specifically tailored to subgiants with mixed modes and uses nested optimization. We then applied this method to perform a detailed seismic modeling of KIC10273246. Results. We obtain models that show good statistical agreements with the observations, both seismic and non-seismic. We show that including core overshooting in the models significantly improves the quality of the seismic fit, optimal models being found for αov = 0.15. Higher amounts of core overshooting strongly worsen the agreement with the observations and are thus firmly ruled out. We also find that having access to two g-dominated mixed modes in young subgiants allows us to place stronger constraints on the gradient of molecular weight in the core and on the central density. Conclusions. This study confirms the high potential of young subgiants with mixed modes to investigate the size of main-sequence convective cores. It paves the way for a more general study including the subgiants observed with Kepler, TESS, and eventually PLATO.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference75 articles.

1. CoRoT sounds the stars: p-mode parameters of Sun-like oscillations on HD 49933

2. The Chemical Composition of the Sun

3. Baglin A., Auvergne M., Barge P., et al. 2006, in The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding, eds. Fridlund M., Baglin A., Lochard J., Conroy L., et al., ESA Spec. Pub., 1306, 33

4. A new correction of stellar oscillation frequencies for near-surface effects

5. The Chemical Evolution of Helium

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3