Analytic solution for the electrostatic potential of the solar wind

Author:

Osuna Alcalaya Pedro,Zouganelis Ioannis,Rodríguez Pacheco Javier

Abstract

Context. Some kinetic models of the solar wind, such as the exospheric ones, make certain assumptions about the solar plasma, which for modelling purposes is generally considered collisionless and quasi-neutral. They also assume specific distribution functions for the electron and proton populations from which the fundamental properties of the plasma, including the density, are calculated using the moment integrals. Imposing the quasi-neutrality condition leads to the presence of an ambipolar electrostatic field, which is responsible for the acceleration of the wind. Usually, the calculation of the moment integrals is complicated by the fact that most kinetic models assume different trajectories for the solar wind components, separating the integrals into chunks corresponding to the pitch angles defining the trajectories. Hence, up to now all these integrals and therefore the plasma fundamental quantities have been calculated numerically. Aims. A new model is presented that makes use of similar assumptions to other kinetic collisionless models but does not need to impose the separation of the populations in different trajectories for the calculation of the integrals. As a consequence, an analytic solution for the electrostatic potential of the solar wind valid for all distances is found. Methods. A kinetic collisionless approach was used to characterise the solar wind plasma. A single equation for the electrostatic potential function was found assuming certain distribution functions (Maxwellian or non-thermal such as Kappa), which include an unknown electrostatic potential, calculating the density integral for those distribution functions and making those densities equal for electrons and protons. Results. An analytic solution for the electrostatic potential as a function of radial distance is found (for the first time for all distances) and shown to produce a non-monotonic total potential, which is compatible with other models like the exospheric ones whose electrostatic potential drives the acceleration of the solar wind. This expression can now be used, in a straightforward way, to provide insight into the importance of the electron distribution functions to shape the electrostatic potential of thermal solar-like outflows.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3