The intermediate neutron capture process

Author:

Choplin A.ORCID,Siess L.,Goriely S.

Abstract

Context. Results from observations report a growing number of metal-poor stars showing an abundance pattern midway between the s- and r-processes. These so-called r/s-stars raise the need for an intermediate neutron capture process (i-process), which is thought to result from the ingestion of protons in a convective helium-burning region, but whose astrophysical site is still largely debated. Aims. We investigate whether an i-process during the asymptotic giant branch (AGB) phase of low-metallicity low-mass stars can develop and whether it can explain the abundances of observed r/s-stars. Methods. We computed a 1 M model at [Fe/H] = −2.5 with the stellar evolution code STAREVOL, using a nuclear network of 1091 species (at maximum) coupled to the transport processes. The impact of the temporal and spatial resolutions on the resulting abundances was assessed. We also identified key elements and isotopic ratios that are specific to i-process nucleosynthesis and carried out a detailed comparison between our model and a sample of r/s-stars. Results. At the beginning of the AGB phase, during the third thermal pulse, the helium driven convection zone is able to penetrate the hydrogen-rich layers. The subsequent proton ingestion leads to a strong neutron burst with neutron densities of ∼4.3 × 1014 cm−3 at the origin of the synthesis of i-process elements. The nuclear energy released by proton burning in the helium-burning convective shell strongly affects the internal structure: the thermal pulse splits and after approximately ten years the upper part of the convection zone merges with the convective envelope. The surface carbon abundance is enhanced by more than 3 dex. This leads to an increase in the opacity, which triggers a strong mass loss and prevents any further thermal pulse. Our numerical tests indicate that the i-process elemental distribution is not strongly affected by the temporal and spatial resolution used to compute the stellar models, but typical uncertainties of ±0.3 dex on individual abundances are found. We show that specific isotopic ratios of Ba, Nd, Sm, and Eu can represent good tracers of i-process nucleosynthesis. Finally, an extended comparison with 14 selected r/s-stars show that the observed composition patterns can be well reproduced by our i-process AGB model. Conclusions. A rich i-process nucleosynthesis can take place during the early AGB phase of low-metallicity low-mass stars and explain the elemental distribution of most of the r/s-stars, but cannot account for the high level of enrichment of the giant stars in a scenario involving pollution by a former AGB companion.

Funder

Fonds de la Recherche Scientifique-FNRS

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3