Unsupervised classification of SDSS galaxy spectra

Author:

Fraix-Burnet D.ORCID,Bouveyron C.,Moultaka J.

Abstract

Context. Defining templates of galaxy spectra is useful to quickly characterise new observations and organise databases from surveys. These templates are usually built from a pre-defined classification based on other criteria. Aims. We present an unsupervised classification of 702 248 spectra of galaxies and quasars with redshifts smaller than 0.25 that were retrieved from the Sloan Digital Sky Survey (SDSS) database, release 7. Methods. The spectra were first corrected for redshift, then wavelet-filtered to reduce the noise, and finally binned to obtain about 1437 wavelengths per spectrum. The unsupervised clustering algorithm Fisher-EM, relying on a discriminative latent mixture model, was applied on these corrected spectra. The full set and several subsets of 100 000 and 300 000 spectra were analysed. Results. The optimum number of classes given by a penalised likelihood criterion is 86 classes, of which the 37 most populated gather 99% of the sample. These classes are established from a subset of 302 214 spectra. Using several cross-validation techniques we find that this classification agrees with the results obtained on the other subsets with an average misclassification error of about 15%. The large number of very small classes tends to increase this error rate. In this paper, we do an initial quick comparison of our classes with literature templates. Conclusions. This is the first time that an automatic, objective and robust unsupervised classification is established on such a large number of galaxy spectra. The mean spectra of the classes can be used as templates for a large majority of galaxies in our Universe.

Funder

3IA Côte d’Azur Investment in the Future project managed by the National Research Agency

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3