A new automated tool for the spectral classification of OB stars

Author:

Kyritsis E.ORCID,Maravelias G.ORCID,Zezas A.ORCID,Bonfini P.ORCID,Kovlakas K.ORCID,Reig P.ORCID

Abstract

Context. As an increasing number of spectroscopic surveys become available, an automated approach to spectral classification becomes necessary. Due to the significance of the massive stars, it is of great importance to identify the phenomenological parameters of these stars (e.g., the spectral type), which can be used as proxies to their physical parameters (e.g., mass and temperature). Aims. In this work, we aim to use the random forest (RF) algorithm to develop a tool for the automated spectral classification of OB-type stars according to their sub-types. Methods. We used the regular RF algorithm, the probabilistic RF, which is an extension of RF that incorporates uncertainties, and we introduced the KDE – RF method which is a combination of the kernel-density estimation and the RF algorithm. We trained the algorithms on the equivalent width (EW) of characteristic absorption lines measured in high-quality spectra (signal-to-noise (S/N)≳50) from large Galactic (LAMOST, GOSSS) and extragalactic surveys (2dF, VFTS) with available spectral types and luminosity classes. By following an adaptive binning approach, we grouped the labels of these data in 11 spectral classes within the O2-B9 range. We examined which of the characteristic spectral lines (features) are more important for the classification based on a number of feature selection methods, and we searched for the optimal hyperparameters of the classifiers to achieve the best performance. Results. From the feature-screening process, we find that the full set of 17 spectral lines is needed to reach the maximum performance per spectral class. We find that the overall accuracy score is ∼70%, with similar results across all approaches. We apply our model in other observational data sets providing examples of the potential application of our classifier to real science cases. We find that it performs well for both single massive stars and for the companion massive stars in Be X-ray binaries, especially for data of similar quality to the training sample. In addition, we propose a reduced ten-features scheme that can be applied to large data sets with lower S/N ∼ 20 − 50. Conclusions. The similarity in the performances of our models indicates the robustness and the reliability of the RF algorithm when it is used for the spectral classification of early-type stars. The score of ∼70% is high if we consider (a) the complexity of such multiclass classification problems (i.e., 11 classes), (b) the intrinsic scatter of the EW distributions within the examined spectral classes, and (c) the diversity of the training set since we use data obtained from different surveys with different observing strategies. In addition, the approach presented in this work is applicable to products from different surveys in terms of quality (e.g., different resolution) and different formats (e.g., absolute or normalized flux), while our classifier is agnostic to the luminosity class of a star, and, as much as possible, it is metallicity independent.

Funder

ERC Horizon 2020

ERC Seventh Framework Programme

ERC Marie Skłodowska-Curie RISE

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galaxy spectral classification and feature analysis based on convolutional neural network;Monthly Notices of the Royal Astronomical Society;2023-09-26

2. Dark dust;Astronomy & Astrophysics;2023-08

3. Revisiting the mass of open clusters with Gaia data;Monthly Notices of the Royal Astronomical Society;2023-07-28

4. Data mining techniques on astronomical spectra data – II. Classification analysis;Monthly Notices of the Royal Astronomical Society;2022-11-12

5. Predicting preeminent Machine Learning Approach on Stars;2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS);2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3