HD 344787: a true Polaris analogue?

Author:

Ripepi V.ORCID,Catanzaro G.ORCID,Molnár L.ORCID,Plachy E.ORCID,Marconi M.ORCID,Clementini G.ORCID,Molinaro R.ORCID,De Somma G.ORCID,Leccia S.ORCID,Mancino S.ORCID,Musella I.ORCID,Cusano F.ORCID,Testa V.

Abstract

Context. Classical Cepheids (DCEPs) are the most important primary indicators for the extragalactic distance scale, but they are also important objects in their own right, allowing us to place constraints on the physics of intermediate-mass stars and the pulsation theories. Aims. We have investigated the peculiar DCEP HD 344787, which is known to exhibit the fastest positive period change of DCEPs, along with a quenching amplitude of the light variation. Methods. We used high-resolution spectra obtained with HARPS-N at the TNG for HD 344787 and the more famous Polaris DCEP to infer their detailed chemical abundances. Results from the analysis of new time-series photometry of HD 344787 obtained by the TESS satellite are also reported. Results. The double-mode nature of the HD344787 pulsation is confirmed by an analysis of the TESS light curve, although with rather tiny amplitudes of a few dozen millimag. This is indication that HD344787 is on the verge of quenching the pulsation. Analysis of the spectra collected with HARPS-N at the TNG reveals an almost solar abundance and no depletion of carbon and oxygen. This means that the star appears to have not gone through first dredge-up. Similar results are obtained for Polaris. Conclusions. Polaris and HD344787 are both confirmed to be most likely at their first crossing of the instability strip. The two stars are likely at the opposite borders of the instability strip for first-overtone DCEPs with metal abundance Z = 0.008. A comparison with other DCEPs that are also thought to be at their first crossing allows us to speculate that the differences we see in the Hertzsprung-Russell diagram might be due to differences in the properties of the DCEP progenitors during the main-sequence phase.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3