Low surface brightness galaxies in z > 1 galaxy clusters: HST approaching the progenitors of local ultra diffuse galaxies

Author:

Bachmann Aisha,van der Burg Remco F. J.,Fensch Jérémy,Brammer Gabriel,Muzzin Adam

Abstract

Ultra diffuse galaxies (UDGs) are a type of large low surface brightness (LSB) galaxies with particularly large effective radii (reff >  1.5 kpc) that are now routinely studied in the Local (z <  0.1) Universe. While they are found to be abundant in clusters, groups, and in the field, their formation mechanisms remain elusive and comprise an active topic of debate. New insights may be found by studying their counterparts at higher redshifts (z >  1.0), even though cosmological surface brightness dimming makes them particularly difficult to detect and study in this channel. In this work, we use the deepest Hubble Space Telescope (HST) imaging stacks of z >  1 clusters, namely, SPT-CL J2106−5844 and MOO J1014+0038. These two clusters, at z = 1.13 and z = 1.23, respectively, were monitored as part of the HST See-Change programme. In making a comparison with the Hubble Extreme Deep Field as the reference field, we find statistical over-densities of large LSB galaxies in both clusters. Based on stellar-population modelling and assuming no size evolution, we find that the faintest sources we can detect are about as bright as expected for the progenitors of the brightest local UDGs. We find that the LSBs we detect in SPT-CL J2106−5844 and MOO J1014−5844 already have old stellar populations that place them on the red sequence. In correcting for incompleteness and based on an extrapolation of local scaling relations, we estimate that distant UDGs are relatively under-abundant, as compared to local UDGs, by a factor ∼3. A plausible explanation for the implied increase over time would be the significant growth of these galaxies over the last ∼8 Gyr, as also suggested by hydrodynamical simulations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3