AMICO galaxy clusters in KiDS-DR3: Cosmological constraints from counts and stacked weak lensing

Author:

Lesci G. F.ORCID,Marulli F.,Moscardini L.,Sereno M.,Veropalumbo A.,Maturi M.,Giocoli C.,Radovich M.,Bellagamba F.,Roncarelli M.,Bardelli S.,Contarini S.,Covone G.,Ingoglia L.,Nanni L.,Puddu E.

Abstract

Aims. We present a cosmological analysis of abundances and stacked weak lensing profiles of galaxy clusters, exploiting the AMICO KiDS-DR3 catalogue. The sample consists of 3652 galaxy clusters with intrinsic richness λ* ≥ 20, over an effective area of 377 deg2, in the redshift range z ∈ [0.1,  0.6]. Methods. We quantified the purity and completeness of the sample through simulations. The statistical analysis has been performed by simultaneously modelling the co-moving number density of galaxy clusters and the scaling relation between the intrinsic richnesses and the cluster masses, assessed through stacked weak lensing profile modelling. The fluctuations of the matter background density, caused by super-survey modes, have been taken into account in the likelihood. Assuming a flat Λ cold dark matter (ΛCDM) model, we constrained Ωm, σ8, S8 ≡ σ8m/0.3)0.5, and the parameters of the mass-richness scaling relation. Results. We obtained Ωm = 0.24−0.04+0.03, σ8 = 0.86−0.07+0.07, and S8 = 0.78−0.04+0.04. The constraint on S8 is consistent within 1σ with the results from WMAP and Planck. Furthermore, we got constraints on the cluster mass scaling relation in agreement with those obtained from a previous weak lensing only analysis.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3