Blue extreme disk-runaway stars with Gaia EDR3

Author:

Irrgang AndreasORCID,Dimpel Markus,Heber Ulrich,Raddi RobertoORCID

Abstract

Since the discovery of hypervelocity stars in 2005, it has been widely believed that only the disruption of a binary system by a supermassive black hole at the Galactic center (GC), that is, the so-called Hills mechanism, is capable of accelerating stars to beyond the Galactic escape velocity. In the meantime, however, driven by the Gaia space mission, there is mounting evidence that many of the most extreme high-velocity early-type stars at high Galactic latitudes do originate in the Galactic disk and not in the GC. Moreover, the ejection velocities of these extreme disk-runaway stars exceed the predicted limits of the classical scenarios for the production of runaway stars. Based on proper motions from the Gaia early data release 3 and on recent and new spectrophotometric distances, we studied the kinematics of 30 such extreme disk-runaway stars, allowing us to deduce their spatial origins in and their ejection velocities from the Galactic disk with unprecedented precision. Only three stars in the sample have past trajectories that are consistent with an origin in the GC, most notably S5-HVS 1, which is the most extreme object in the sample by far. All other program stars are shown to be disk runaways with ejection velocities that sharply contrast at least with classical ejection scenarios. They include HVS 5 and HVS 6, which are both gravitationally unbound to the Milky Way. While most stars originate from within a galactocentric radius of 15 kpc, which corresponds to the observed extent of the spiral arms, a group of five stars stems from radii of about 21−29 kpc. This indicates a possible link to outer Galactic rings and a potential origin from infalling satellite galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3