Rotational spectroscopy of isotopic cyclopropenone, c-H2C3O, and determination of its equilibrium structure

Author:

Müller Holger S. P.ORCID,Brahmi M. Ananya,Guillemin Jean-ClaudeORCID,Lewen Frank,Schlemmer StephanORCID

Abstract

Context. Cyclopropenone was first detected in the cold and less dense envelope of the giant molecular cloud Sagittarius B2(N). It was found later in several cold dark clouds and it may be possible to detect its minor isotopic species in these environments. In addition, the main species may well be identified in warmer environments. Aims. We aim to extend existing line lists of isotopologs of c-H2C3O from the microwave to the millimeter region and create one for the singly deuterated isotopolog to facilitate their detections in space. Furthermore, we aim to extend the line list of the main isotopic species to the submillimeter region and to evaluate an equilibrium structure of the molecule. Methods. We employed a cyclopropenone sample in natural isotopic composition to investigate the rotational spectra of the main and 18O-containing isotopologs as well as the two isotopomers containing one 13C atom. Spectral recordings of the singly and doubly deuterated isotopic species were obtained using a cyclopropenone sample highly enriched in deuterium. We recorded rotational transitions in the 70−126 and 160−245 GHz regions for all isotopologs and also in the 342−505 GHz range for the main species. Quantum-chemical calculations were carried out to evaluate initial spectroscopic parameters and the differences between ground-state and equilibrium rotational parameters in order to derive semi-empirical equilibrium structural parameters. Results. We determined new or improved spectroscopic parameters for six isotopologs and structural parameters according to different structure models. Conclusions. The spectroscopic parameters are accurate enough to identify minor isotopic species at centimeter and millimeter wavelengths while those of the main species are deemed to be reliable up to 1 THz. Our structural parameters differ from earlier ones. The deviations are attributed to misassignments in the earlier spectrum of one isotopic species.

Funder

Deutsche Forschungsgemeinschaft

Centre National d'Etudes Spatiales

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3