Laboratory spectroscopy of theoretical ices: Predictions for JWST and test for astrochemical models,

Author:

Müller B.ORCID,Giuliano B. M.,Vasyunin A.,Fedoseev G.,Caselli P.

Abstract

Context. The pre-stellar core L1544 has been the subject of several observations conducted in the past years, complemented by modelling studies focused on its gas and ice-grain chemistry. The chemical composition of the ice mantles reflects the environmental physical changes along the temporal evolution, such as density and temperature. The investigation outcome hints at a layered structure of interstellar ices with abundance of H2O in the inner layers and an increasing concentration of CO near the surface. The morphology of interstellar ice analogues can be investigated experimentally assuming a composition derived from chemical models. Aims. This research presents a new approach of a three-dimensional fit where observational results are first fitted with a gas-grain chemical model predicting the exact ice composition including infrared (IR) inactive species. Then the laboratory IR spectra are recorded for interstellar ice analogues whose compositions reflect the obtained numerical results, in a layered and in a mixed morphology. These results could then be compared with the results of James Webb Space Telescope (JWST) observations. Special attention is paid to the inclusion of IR inactive species whose presence is predicted in the ice, but is typically omitted in the laboratory obtained data. This stands for N2, one of the main possible constituents of interstellar ice mantles, and O2. Methods. Ice analogue spectra were recorded at a temperature of 10 K using a Fourier transform infrared spectrometer. In the case of layered ice we deposited a H2O-CO-N2-O2 mixture on top of a H2O-CH3OH-N2 ice, while in the case of mixed ice we examined a H2O-CH3OH-N2-CO composition. The selected species are the four most abundant ice components predicted by the chemical model. Results. Following the changing composition and structure of the ice, we find differences in the absorption bands for most of the examined vibrational modes. The extent of observed changes in the IR band profiles will allow us to analyse the structure of ice mantles in L1544 from future observations by the JWST. Conclusions. Our spectroscopic measurements of interstellar ice analogues predicted by our well-received gas-grain chemical codes of pre-stellar cores will allow detailed comparison with upcoming JWST observations. This is crucial in order to put stringent constraints on the chemical and physical structure of dust icy mantles just before the formation of stars and protoplanetary disks, and to explain surface chemistry.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3