Nano-grain depletion in photon-dominated regions

Author:

Schirmer T.,Ysard N.,Habart E.,Jones A. P.,Abergel A.,Verstraete L.

Abstract

Context. Carbonaceous nano-grains play a fundamental role in the physico-chemistry of the interstellar medium (ISM) and especially of photon-dominated regions (PDRs). Their properties vary with the local physical conditions and affect the local chemistry and dynamics. Aims. We aim to highlight the evolution of carbonaceous nano-grains in three different PDRs and propose a scenario of dust evolution as a response to the physical conditions. Methods. We used Spitzer/IRAC (3.6, 4.5, 5.8, and 8 µm) and Spitzer/MIPS (24 µm) together with Herschel/PACS (70 µm) to map dust emission in IC63 and the Orion Bar. To assess the dust properties, we modelled the dust emission in these regions using the radiative transfer code SOC together with the THEMIS dust model. Results. Regardless of the PDR, we find that nano-grains are depleted and that their minimum size is larger than in the diffuse ISM (DISM), which suggests that the mechanisms that lead nano-grains to be photo-destroyed are very efficient below a given critical size limit. The evolution of the nano-grain dust-to-gas mass ratio with both G0 and the effective temperature of the illuminating star indicates a competition between the nano-grain formation through the fragmentation of larger grains and nano-grain photo-destruction. We modelled dust collisions driven by radiative pressure with a classical 1D approach to show that this is a viable scenario for explaining nano-grain formation through fragmentation and, thus, the variations observed in nano-grain dust-to-gas mass ratios from one PDR to another. Conclusions. We find a broad variation in the nano-grain dust properties from one PDR to another, along with a general trend of nano-grain depletion in these regions. We propose a viable scenario of nano-grain formation through fragmentation of large grains due to radiative pressure-induced collisions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3