Implementation paradigm for supervised flare forecasting studies: A deep learning application with video data

Author:

Guastavino SabrinaORCID,Marchetti FrancescoORCID,Benvenuto FedericoORCID,Campi CristinaORCID,Piana MicheleORCID

Abstract

Aims. In this study, we introduce a general paradigm for generating independent and well-balanced training, validation, and test sets for use in supervised machine and deep learning flare forecasting, to determine the extent to which video-based deep learning can predict solar flares. Methods. We use this implementation paradigm in the case of a deep neural network, which takes videos of magnetograms recorded by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) as input. Results. The way the training and validation sets are prepared for network optimization has a significant impact on the prediction performances. Furthermore, deep learning is able to realize flare video classification with prediction performances that are in line with those obtained by machine learning approaches that require an a priori extraction of features from the HMI magnetograms. Conclusions. To our knowledge, this is the first time that the solar flare forecasting problem is addressed by means of a deep neural network for video classification, which does not require any a priori extraction of features from the HMI magnetograms.

Funder

AI-FLARES ASI-INAF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3