Supermassive black holes at high redshift are expected to be obscured by their massive host galaxies’ interstellar medium

Author:

Gilli R.ORCID,Norman C.ORCID,Calura F.ORCID,Vito F.ORCID,Decarli R.ORCID,Marchesi S.ORCID,Iwasawa K.ORCID,Comastri A.ORCID,Lanzuisi G.ORCID,Pozzi F.ORCID,D’Amato Q.ORCID,Vignali C.ORCID,Brusa M.ORCID,Mignoli M.ORCID,Cox P.ORCID

Abstract

We combine results from deep ALMA observations of massive (M* > 1010M) galaxies at different redshifts to show that the column density of their interstellar medium (ISM) rapidly increases toward early cosmic epochs. Our analysis includes objects from the ASPECS and ALPINE large programs, as well as individual observations of z ∼ 6 quasar hosts. When accounting for non-detections and correcting for selection effects, we find that the median surface density of the ISM of the massive galaxy population evolves as ∼(1 + z)3.3. This means that the ISM column density toward the nucleus of a z > 3 galaxy is typically > 100 times larger than locally, and it may reach values as high as Compton-thick at z ≳ 6. Remarkably, the median ISM column density is on the same order of what is measured from X-ray observations of large active galactic nucleus (AGN) samples already at z ≳ 2. We have developed a simple analytic model for the spatial distribution of ISM clouds within galaxies, and estimate the total covering factor toward active nuclei when obscuration by ISM clouds on the host scale is added to that of parsec-scale circumnuclear material (the so-called torus). The model includes clouds with a distribution of sizes, masses, and surface densities, and also allows for an evolution of the characteristic cloud surface density with redshift, Σc, * ∝ (1 + z)γ. We show that, for γ = 2, such a model successfully reproduces the increase in the obscured AGN fraction with redshift that is commonly observed in deep X-ray surveys, both when different absorption thresholds and AGN luminosities are considered. Our results suggest that 80–90% of supermassive black holes in the early Universe (z > 6 − 8) are hidden to our view, primarily by the ISM in their hosts. We finally discuss the implications of our results and how they can be tested observationally with current and forthcoming facilities (e.g., VLT, E-ELT, ALMA, and JWST) and with next-generation X-ray imaging satellites. By extrapolating the observed X-ray nebulae around local AGN to the environments of supermassive black holes at high redshifts, we find ≲1″ nebulae impose stringent design constraints on the spatial resolution of any future X-ray imaging Great Observatory in the coming decades.

Funder

ASI

Spanish MCINN

INAF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3