Redundant apodization for direct imaging of exoplanets

Author:

Leboulleux LucieORCID,Carlotti Alexis,N’Diaye Mamadou,Bertrou-Cantou Arielle,Milli Julien,Pourré Nicolas,Cantalloube Faustine,Mouillet David,Vérinaud Christophe

Abstract

Context. Telescope pupil fragmentation from spiders generates specific aberrations that have been observed at various telescopes and are expected on the 30-meter class telescopes under construction. This is known as the island effect, and it induces differential pistons, tips, and tilts on the pupil petals, deforming the instrumental point spread function (PSF); it is one of the main limitations to the direct detection of exoplanets with high-contrast imaging. These petal-level aberrations can have different origins such as the low-wind effect or petaling errors in the adaptive optics reconstruction. Aims. In this paper, we propose a method for alleviating the impact of the aberrations induced by island effects on high-contrast imaging by adapting the coronagraph design in order to increase its robustness to petal-level aberrations. Methods. Following a method first developed and applied on robustness to errors due to primary mirror segmentation (e.g., segment phasing errors, missing segments), we developed and tested redundant apodized pupils (RAP): apodizers designed at the petal-scale, then duplicated and rotated to mimic the pupil petal geometry. Results. We applied this concept to the ELT architecture, made of six identical petals, to yield a 10−6 contrast in a dark region from 8 to 40λ/D. Both amplitude and phase apodizers proposed in this paper are robust to differential pistons between petals, with minimal degradation to their coronagraphic PSFs and contrast levels. In addition, they are also more robust to petal-level tip-tilt errors than classical apodizers designed for the whole pupil, with which the limit of contrast of 10−6 in the coronagraph dark zone is achieved for constraints up to 2 rad RMS of these petal-level modes. Conclusions. In this paper the RAP concept proves its robustness to island effects (low-wind effect and post-adaptive optics petaling), with an application to the ELT architecture. It can also be considered for other 8- to 30-m class ground-based units such as VLT/SPHERE, Subaru/SCExAO, GMT/GMagAO-X, and TMT/PSI.

Funder

ERC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3