Inferring properties of dust in supernovae with neural networks

Author:

Ansari ZoeORCID,Gall ChristaORCID,Wesson RogerORCID,Krause OswinORCID

Abstract

Context. Determining properties of dust that formed in and around supernovae from observations remains challenging. This may be due to either incomplete coverage of data in wavelength or time, but also due to often inconspicuous signatures of dust in the observed data. Aims. Here we address this challenge using modern machine learning methods to determine the amount and temperature of dust as well as its composition from a large set of simulated data. We aim to quantify if such methods are suitable to infer quantities and properties of dust from future observations of supernovae. Methods. We developed a neural network consisting of eight fully connected layers and an output layer with specified activation functions that allowed us to predict the dust mass, temperature, and composition as well as their respective uncertainties for each single supernova of a large set of simulated supernova spectral energy distributions (SEDs). We produced the large set of supernova SEDs for a wide range of different supernovae and dust properties using the advanced, fully three-dimensional radiative transfer code MOCASSIN. We then convolved each SED with the entire suite of James Webb Space Telescope (JWST) bandpass filters to synthesise a photometric data set. We split this data set into three subsets which were used to train, validate, and test the neural network. To find out how accurately the neural network can predict the dust mass, temperature, and composition from the simulated data, we considered three different scenarios. First, we adopted a uniform distance of ~0.43 Mpc for all simulated SEDs. Next we uniformly distributed all simulated SEDs within a volume of 0.43–65 Mpc and, finally, we artificially added random noise corresponding to a photometric uncertainty of 0.1 mag. Lastly, we conducted a feature importance analysis via SHapley Additive explanations (SHAP) to find the minimum set of JWST bandpass filters required to predict the selected dust quantities with an accuracy that is comparable to standard methods in the literature. Results. We find that our neural network performs best for the scenario in which all SEDs are at the same distance and for a minimum subset of seven JWST bandpass filters within a wavelength range 3−25 µm. This results in rather small root-mean-square errors (RMSEs) of ~0.08 dex and ~42 K for the most reliable predicted dust masses and temperatures, respectively. For the scenario in which SEDs are distributed out to 65 Mpc and contain synthetic noise, the most reliable predicted dust masses and temperatures achieve an RMSE of ~0.12 dex and ~38 K, respectively. Thus, in all scenarios, both predicted dust quantities have smaller predicted uncertainties compared to those in the literature achieved with common SED fitting methods of actual observations of supernovae. Moreover, our neural network can well distinguish between the different dust species included in our work, reaching a classification accuracy of up to 95% for carbon and 99% for silicate dust. Conclusions. Although we trained, validated, and tested our neural network entirely on simulated SEDs, our analysis shows that a suite of JWST bandpass filters containing NIRCam F070W, F140M, F356W and F480M as well as MIRI F560W, F770W, F1000W, F1130W, F1500W, and F1800W filters are likely the most important filters needed to derive the quantities and determine the properties of dust that formed in and around supernovae from future observations. We tested this on selected optical to infrared data of SN 1987A at 615 days past explosion and find good agreement with dust masses and temperatures inferred with standard fitting methods in the literature.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference88 articles.

1. Abadi M., Agarwal A., Barham P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, software available from tensorflow.org

2. Multiline transfer and the dynamics of stellar winds

3. Hungary rewards highly cited scientists with bonus grants

4. Early gray dust formation in the type IIn SN 2005ip

5. Bellm E. 2014, in The Third Hot-wiring the Transient Universe Workshop, ed. Wozniak P. R., Graham M. J., Mahabal A. A., & Seaman R., 27

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3