Characterization of the Microlensed Hyperspectral Imager prototype

Author:

van Noort M.,Chanumolu A.

Abstract

Context. The Microlensed Hyperspectral Imager (MiHI) prototype is an integral field spectrograph based on a double-sided microlens array (MLA), installed as an extension to the TRIPPEL spectrograph at the Swedish Solar Telescope (SST).Aims. Due to the mixing of spatial and spectral information in the focal plane, the data are mapped in an interleaved way onto the image sensor. Mapping the information back into its original spatial and spectral dimensions renders the data reduction more complex than usual, and requires the development of a new reduction procedure.Methods. The mapping of the data onto the detector is calculated using a simplified model of the image formation process. Since the moiré fringes that are formed due to the interference of the pixel grid and the MLA grid are a natural consequence of this formation process, the extraction of the data using such a model should eliminate them from the data cubes, thereby eliminating the principal source of instrumentally induced artifacts. In addition, any change in the model caused by small movements of the raw image on the detector can be fitted and included in the model.Results. An effective model of the instrument was fitted using a combination of the numerical results obtained for the propagation of light through an ideal dual microlens system, complemented with an ad hoc fit of the optical performance of the instrument and the individual elements in the MLA. The model includes individual fits for the position, focus, focus gradient, coma, and a few high-order symmetric modes, which are required to account for the spectral crosstalk within each image row. The model is able to accurately reproduce the raw flat-field data from a hyperspectral cube that is virtually free of moiré fringes, and it represents a critical first step in a new hyperspectral data reduction procedure.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3