Meta-modelling the climate of dry tide-locked rocky planets

Author:

Auclair-Desrotour P.ORCID,Deitrick R.ORCID,Heng K.

Abstract

Context. Rocky planets hosted by close-in extrasolar systems are likely to be tidally locked in 1:1 spin-orbit resonance, a configuration where they exhibit a permanent dayside and nightside. Because of the resulting day-night temperature gradient, the climate and large-scale circulation of these planets are strongly determined by their atmospheric stability against collapse, which designates the runaway condensation of greenhouse gases on the nightside. Aims. To better constrain the surface conditions and climatic regime of rocky extrasolar planets located in the habitable zone of their host star, it is therefore crucial to elucidate the mechanisms that govern the day-night heat redistribution. Methods. As a first attempt to bridge the gap between multiple modelling approaches ranging from simplified analytical greenhouse models to sophisticated 3D general circulation models (GCMs), we developed a general circulation meta-model (GCMM) able to reproduce the closed-form solutions obtained in earlier studies, the numerical solutions obtained from GCM simulations, and solutions provided by intermediate models, assuming the slow rotator approximation. We used this approach to characterise the atmospheric stability of Earth-sized rocky planets with dry atmospheres containing CO2, and we benchmarked it against 3D GCM simulations using the THOR GCM. Results. We observe that the collapse pressure below which collapse occurs can vary by ~40% around the value predicted by analytical scaling laws depending on the mechanisms taken into account among radiative transfer, atmospheric dynamics, and turbulent diffusion. Particularly, we find (i) that the turbulent diffusion taking place in the dayside planetary boundary layer (PBL) globally tends to warm up the nightside surface hemisphere except in the transition zone between optically thin and optically thick regimes, (ii) that the PBL also significantly affects the day-night advection timescale, and (iii) that the slow rotator approximation holds from the moment that the normalised equatorial Rossby deformation radius is greater than 2.

Funder

ERC

National Swiss Foundation

PlanetS National Center of Competence in Research

Center for Space & Habitability

MERAC Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3