Radiative losses in the chromosphere during a C-class flare

Author:

Yadav R.,de la Cruz Rodríguez J.,Kerr G. S.,Díaz Baso C. J.,Leenaarts J.

Abstract

Context. Solar flares release an enormous amount of energy (∼1032 erg) into the corona. A substantial fraction of this energy is transported to the lower atmosphere, which results in chromospheric heating. The mechanisms that transport energy to the lower solar atmosphere during a flare are still not fully understood. Aims. We aim to estimate the temporal evolution of the radiative losses in the chromosphere at the footpoints of a C-class flare, in order to set observational constraints on the electron beam parameters of a RADYN flare simulation. Methods. We estimated the radiative losses from hydrogen, and singly ionized Ca and Mg using semiempirical model atmospheres, which were inferred from a multiline inversion of observed Stokes profiles obtained with the CRISP and CHROMIS instruments on the Swedish 1-m Solar Telescope. The radiative losses were computed taking into account the effect of partial redistribution and non-local thermodynamic equilibrium. To estimate the integrated radiative losses in the chromosphere, the net cooling rates were integrated between the temperature minimum and the height where the temperature reaches 10 kK. We also compared our time series of radiative losses with those from the RADYN flare simulations. Results. We obtained a high spatial-resolution map of integrated radiative losses around the flare peak time. The stratification of the net cooling rate suggests that the Ca IR triplet lines are responsible for most of the radiative losses in the flaring atmosphere. During the flare peak time, the contribution from Ca II H and K and Mg II h and k lines are strong and comparable to the Ca IR triplet (∼32 kW m−2). Since our flare is a relatively weak event, the chromosphere is not heated above 11 kK, which in turn yields a subdued Lyα contribution (∼7 kW m−2) in the selected limits of the chromosphere. The temporal evolution of total integrated radiative losses exhibits sharply rising losses (0.4 kW m−2 s−1) and a relatively slow decay (0.23 kW m−2 s−1). The maximum value of total radiative losses is reached around the flare peak time, and can go up to 175 kW m−2 for a single pixel located at footpoint. After a small parameter study, we find the best model-data consistency in terms of the amplitude of radiative losses and the overall atmospheric structure with a RADYN flare simulation in the injected energy flux of 5 × 1010 erg s−1 cm−2.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3