Structure and kinematics of a massive galaxy at z ∼ 7

Author:

Posses A. C.,Aravena M.,González-López J.,Assef R. J.,Lambert T.,Jones G. C.,Bouwens R. J.,Brisbin D.,Díaz-Santos T.,Herrera-Camus R.,Ricci C.,Smit R.

Abstract

Context. Observations of the rest-frame UV emission of high-redshift galaxies suggest that the early stages of galaxy formation involve disturbed structures. Imaging the cold interstellar medium (ISM) can provide a unique view of the kinematics associated with the assembly of galaxies. Aims. In this paper, we analyze the spatial distribution and kinematics of the cold ionized gas of the normal star-forming galaxy COS-2987030247 at z = 6.8076, based on new high-resolution observations of the [C II] 158 μm line emission obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). Methods. The analysis of these observations allowed us to: compare the spatial distribution and extension of the [C II] and rest-frame UV emission, model the [C II] line data-cube using the 3DBAROLO code, and measure the [C II] luminosity and star formation rate (SFR) surface densities in the galaxy subregions. Results. The system is found to be composed of a main central source, a fainter north extension, and candidate [C II] companions located 10-kpc away. We find similar rest-frame UV and [C II] spatial distributions, suggesting that the [C II] emission emerges from the star-forming regions. The agreement between the UV and [C II] surface brightness radial profiles rules out diffuse, extended [C II] emission (often called a [C II] halo) in the main galaxy component. The [C II] velocity map reveals a velocity gradient in the north-south direction, suggesting ordered motion, as commonly found in rotating-disk galaxies. However, higher resolution observations would be needed to rule out a compact merger scenario. Our model indicates an almost face-on galaxy (i ∼ 20°), with a average rotational velocity of 86 ± 16 km s−1 and a low average velocity dispersion, σ < 30 km s−1. This result implies a dispersion lower than the expected value from observations and semi-analytic models of high redshift galaxies. Furthermore, our measurements indicate that COS-2987030247 and its individual regions systematically lie within the local L[CII]-SFR relationship, yet slightly below the local Σ[CII]UV relation. Conclusions. We argue that COS-2987030247 is a candidate rotating disk experiencing a short period of stability which will possibly become perturbed at later times by accreting sources.

Funder

FONDECYT

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3