Spectral evidence of solar neighborhood analogs in CALIFA galaxies

Author:

Mejía-Narváez A.ORCID,Sánchez S. F.,Carigi L.,Barrera-Ballesteros J. K.,Drory N.,Espinosa-Ponce C.

Abstract

Aims. We introduce a novel nonparametric method to find solar neighborhood analogs (SNAs) in extragalactic integral field spectroscopic surveys. The main ansatz is that the physical properties of the solar neighborhood (SN) should be encoded in its optical stellar spectrum. Methods. We assume that our best estimate of such a spectrum is the one extracted from the analysis performed by the Code for Stellar properties Heuristic Assignment (CoSHA) from the MaStar stellar library. It follows that finding SNAs in other galaxies consist in matching, in a χ2 sense, the SN reference spectrum across the optical extent of the observed galaxies. We applied this procedure to a selection of CALIFA galaxies, by requiring a close to face-on projection, relative isolation, and non-active galactic nucleus. We explore how the local and global properties of the SNAs (stellar age, metallicity, dust extinction, mass-to-light ratio, stellar surface mass density, star-formation density, and galactocentric distance) and their corresponding host galaxies (morphological type, total stellar mass, star-formation rate, and effective radius) compared with those of the SN and the Milky Way (MW). Results. We find that SNAs are located preferentially in S(B)a–S(B)c galaxies, in a ring-like structure, which radii seem to scale with the galaxy size. Despite the known sources of systematics and errors, most properties present a considerable agreement with the literature on the SN. We conclude that the solar neighborhood is relatively common in our sample of SNAs. Our results warrant a systematic exploration of correlations among the physical properties of the SNAs and their host galaxies. We reckon that our method should inform current models of the galactic habitable zone in our MW and other galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3