Automatic model-based telluric correction for the ESPRESSO data reduction software

Author:

Allart R.ORCID,Lovis C.ORCID,Faria J.ORCID,Dumusque X.ORCID,Sosnowska D.,Figueira P.ORCID,Silva A. M.ORCID,Mehner A.ORCID,Pepe F.ORCID,Cristiani S.ORCID,Rebolo R.,Santos N. C.ORCID,Adibekyan V.ORCID,Cupani G.ORCID,Di Marcantonio P.ORCID,D’Odorico V.ORCID,González Hernández J. I.ORCID,Martins C. J. A. P.ORCID,Milaković D.ORCID,Nunes N. J.ORCID,Sozzetti A.ORCID,Suárez Mascareño A.ORCID,Tabernero H.ORCID,Zapatero Osorio M. R.

Abstract

Context. Ground-based high-resolution spectrographs are key instruments for several astrophysical domains, such as exoplanet studies. Unfortunately, the observed spectra are contaminated by the Earth’s atmosphere and its large molecular absorption bands. While different techniques (forward radiative transfer models, principle component analysis (PCA), or other empirical methods) exist to correct for telluric lines in exoplanet atmospheric studies, in radial velocity (RV) studies, telluric lines with an absorption depth of >2% are generally masked, which poses a problem for faint targets and M dwarfs as most of their RV content is present where telluric contamination is important. Aims. We propose a simple telluric model to be embedded in the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) data reduction software (DRS). The goal is to provide telluric-free spectra and enable RV measurements through the cross-correlation function technique (and others), including spectral ranges where telluric lines fall. Methods. The model is a line-by-line radiative transfer code that assumes a single atmospheric layer. We use the sky conditions and the physical properties of the lines from the HITRAN database to create the telluric spectrum. This high-resolution model is then convolved with the instrumental resolution and sampled to the instrumental wavelength grid. A subset of selected telluric lines is used to robustly fit the spectrum through a Levenberg-Marquardt minimization algorithm. Results. We computed the model to the H2O lines in the spectral range of ESPRESSO. When applied to stellar spectra from A0- to M5-type stars, the residuals of the strongest water lines are below the 2% peak-to-valley (P2V) amplitude for all spectral types, with the exception of M dwarfs, which are within the pseudo-continuum. We then determined the RVs from the telluric-corrected ESPRESSO spectra of Tau Ceti and Proxima. We created telluric-free masks and compared the obtained RVs with the DRS RVs. In the case of Tau Ceti, we identified that micro-telluric lines introduce systematics up to an amplitude of 58 cm s−1 and with a period of one year if not corrected. For Proxima, the impact of micro-telluric lines is negligible due to the low flux below 5900 A. For late-type stars, the gain in spectral content at redder wavelengths is equivalent to a gain of 25% in photon noise or a factor of 1.78 in exposure time. This leads to better constraints on the semi-amplitude and eccentricity of Proxima d, which was recently proposed as a planet candidate. Finally, we applied our telluric model to the O2 γ-band and we obtained residuals below the 2% P2V amplitude. Conclusions. We propose a simple telluric model for high-resolution spectrographs to correct individual spectra and to achieve precise RVs. The removal of micro-telluric lines, coupled with the gain in spectral range, leads to more precise RVs. Moreover, we showcase that our model can be applied to other molecules, and thus to other wavelength regions observed by other spectrographs, such as NIRPS.

Funder

FRQNT

SNSF

ERC

FCT

MICIN

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3