Dynamics of asteroid systems post-rotational fission

Author:

Ho AlexORCID,Wold Margrethe,Poursina Mohammad,Conway John T.

Abstract

Asteroid binaries found among the near-Earth objects are believed to have formed from rotational fission. In this paper, we study the dynamical evolution of asteroid systems the moment after fission. The model considers two bodies the moment after a contact binary separates due to rotational fission. Both bodies are modeled as ellipsoids, and the secondary is given an initial rotation angle about its body-fixed y-axis. Moreover, we consider six different cases, three where the density of the secondary varies and three where the shape of the secondary varies. The simulations consider 45 different initial tilt angles of the secondary, each with 37 different mass ratios. We start the dynamical simulations at the moment the contact binary reaches a spin fission limit, and our model ensures that the closest distance between the surfaces of the two bodies is always kept at 1 cm. The forces, torques, and gravitational potential between the two bodies are modeled using a newly developed surface integration scheme, giving exact results for two ellipsoids. We find that more than 80% of the simulations end with the two bodies impacting, and collisions between the bodies are more common when the density of the secondary is lower, or when it becomes more elongated. In comparison with observed data on asteroid pairs, we find that variations in density and shape of the secondary can account for some of the spread seen in the rotation period for observed pairs. Furthermore, the secondary may also reach a spin limit for surface disruption, creating a ternary or multiple system. We find that secondary fission typically occurs within the first five hours after the contact binary separates, and is more common when the secondary is less dense or more elongated.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3