Retrieving cosmological information from small-scale CMB foregrounds

Author:

Gorce AdélieORCID,Douspis MarianORCID,Salvati Laura

Abstract

Recent results of ground-based telescopes, giving high-quality measurements of the cosmic microwave background (CMB) temperature power spectrum on small scales (below 1 deg) motivate the need for an accurate model of foregrounds, which dominate the primary signal at these multipoles. In a previous work, we have shown that cosmological information could be retrieved from the power spectrum of the thermal Sunyaev Zel’dovich (SZ) effect. In this work, we introduce a physically motivated model of the Epoch of Reionisation in the cosmological analysis of CMB data, which is coherent on all scales. In particular, at high multipoles, the power spectrum of the kinetic SZ (kSZ) effect is inferred from a set of cosmological and reionisation parameters by a machine-learning algorithm. First including an asymmetric parameterisation of the reionisation history in the Planck 2018 data analysis, we retrieve a value of the Thomson optical depth consistent with previous results, but stemming from a completely different history of reionisation in which the first luminous sources light up as early as z = 15. Considering the latest small-scale data from the South Pole telescope (SPT) and letting the cosmology free to vary, we find that including the new cosmology-dependent tSZ and kSZ spectra helps tighten the constraints on their amplitudes by breaking their degeneracy. We report a 5σ measurement of the kSZ signal at  = 3000, D3000kSZ = 3.4−0.3+0.5 μK2 at the 68% confidence level (C.L.), marginalised over cosmology, as well as an upper limit on the patchy signal from reionisation D3000pkSZ < 1.6 μK2 (95% C.L.). Additionally, we find that the SPT data favour slightly earlier reionisation scenarios than Planck, leading to τ = 0.062−0.015+0.012 and a reionisation midpoint zre = 7.9−1.3+1.1 (68% C.L.), which is in line with constraints from high-redshift quasars and galaxies.

Funder

Programme National Cosmology et Galaxies

Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholars program

Trottier Chair in Astrophysics

Canada 150 Programme

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3