Spherical harmonic decomposition and interpretation of the shapes of the small Saturnian inner moons

Author:

Rambaux N.ORCID,Lainey V.,Cooper N.ORCID,Auzemery L.,Zhang Q. F.ORCID

Abstract

Context. The Cassini-Huygens space mission made a series of observations of Saturn’s small satellites during its grand finale stage. These measurements were performed in order to study the shape, geology, and surface composition of the small satellites as well as to study the impact of the environment, in particular the rings, on these small bodies. Aims. The purpose of this study is to focus on the shape analysis of the small Saturnian satellites in order to describe their global figure and large-scale topography, as well as to deduce fundamental quantities, gravity field, and amplitude of the diurnal libration by assuming that the bodies are homogeneous. Methods. We used two approaches in this study. On the one hand, we directly exploited the Cassini images of the small satellites by performing limb measurements and deducing a confidence interval on the shape measurements. On the other hand, we used previously published shape models which combine limb measurements and control points. These shape models were then decomposed and described in spherical harmonics. Results. We found that the shape of the small satellites can be described with a confidence interval between 50 and 150 m. The low degree in spherical harmonics (degree 2) indicated that Telesto, Pandora, Pan, Janus, and Helene have a degree 2 shape close to the Omega sequence, which was defined recently, where the potential is constant along a meridian perpendicular to the longest axis. The degree 2 shape of Epimetheus, on the other hand, is close to the Roche sequence. In contrast, Prometheus, Calypso, and Atlas are in the Low-Brown region. The root mean square spectrum and spherical harmonic maps then allowed us to describe the topography of the satellites, and in particular to highlight equatorial ridges for some satellites including Daphnis. Finally, our estimates of the libration amplitude in the homogeneous case provide values in agreement with previously published librational measurements for Epimetheus while highlighting the proximity of the resonance for Epimetheus, Pandora, and Prometheus. Conclusions. The high resolution images of the internal satellites have allowed us to describe the geology and the geophysics of these bodies. Future comparison of these amplitudes with new librational measurements deduced, for example, by the astrometric method, will allow us to obtain information on the internal structure of these bodies. Similar studies could be carried out on the internal satellites of Jupiter using images from the Europa Clipper (NASA) or JUICE (ESA) missions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3